1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
-- |
-- Module : Basement.Block
-- License : BSD-style
-- Maintainer : Haskell Foundation
--
-- Types to represent ℤ/nℤ.
--
-- ℤ/nℤ is a finite field and is defined as the set of natural number:
-- {0, 1, ..., n − 1}.
--
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeOperators #-}
module Basement.Bounded
( Zn64
, unZn64
, Zn
, unZn
, zn64
, zn
, zn64Nat
, znNat
) where
import GHC.TypeLits
import Data.Word
import Basement.Compat.Base
import Basement.Compat.Natural
import Basement.Numerical.Number
import Data.Proxy
import Basement.Nat
import qualified Prelude
-- | A type level bounded natural backed by a Word64
newtype Zn64 (n :: Nat) = Zn64 { unZn64 :: Word64 }
deriving (Show,Eq,Ord)
instance (KnownNat n, NatWithinBound Word64 n) => Prelude.Num (Zn64 n) where
fromInteger = zn64 . Prelude.fromInteger
(+) = add64
(-) = sub64
(*) = mul64
abs a = a
negate _ = error "cannot negate Zn64: use Foundation Numerical hierarchy for this function to not be exposed to Zn64"
signum (Zn64 a) = Zn64 (Prelude.signum a)
type instance NatNumMaxBound (Zn64 n) = n
instance (KnownNat n, NatWithinBound Word64 n) => Integral (Zn64 n) where
fromInteger = zn64 . Prelude.fromInteger
instance (KnownNat n, NatWithinBound Word64 n) => IsIntegral (Zn64 n) where
toInteger (Zn64 n) = toInteger n
instance (KnownNat n, NatWithinBound Word64 n) => IsNatural (Zn64 (n :: Nat)) where
toNatural (Zn64 n) = toNatural n
-- | Create an element of ℤ/nℤ from a Word64
--
-- If the value is greater than n, then the value is normalized by using the
-- integer modulus n
zn64 :: forall n . (KnownNat n, NatWithinBound Word64 n) => Word64 -> Zn64 n
zn64 v = Zn64 (v `Prelude.mod` natValWord64 (Proxy :: Proxy n))
-- | Create an element of ℤ/nℤ from a type level Nat
zn64Nat :: forall m n . (KnownNat m, KnownNat n, NatWithinBound Word64 m, NatWithinBound Word64 n, CmpNat m n ~ 'LT)
=> Proxy m
-> Zn64 n
zn64Nat p = Zn64 (natValWord64 p)
-- | Add 2 Zn64
add64 :: forall n . (KnownNat n, NatWithinBound Word64 n) => Zn64 n -> Zn64 n -> Zn64 n
add64 (Zn64 a) (Zn64 b) = Zn64 ((a Prelude.+ b) `Prelude.mod` natValWord64 (Proxy :: Proxy n))
-- | subtract 2 Zn64
sub64 :: forall n . (KnownNat n, NatWithinBound Word64 n) => Zn64 n -> Zn64 n -> Zn64 n
sub64 (Zn64 a) (Zn64 b) = Zn64 ((a Prelude.- b) `Prelude.mod` natValWord64 (Proxy :: Proxy n))
-- | Multiply 2 Zn64
mul64 :: forall n . (KnownNat n, NatWithinBound Word64 n) => Zn64 n -> Zn64 n -> Zn64 n
mul64 (Zn64 a) (Zn64 b) = Zn64 ((a Prelude.* b) `Prelude.mod` natValWord64 (Proxy :: Proxy n))
-- | A type level bounded natural
newtype Zn (n :: Nat) = Zn { unZn :: Natural }
deriving (Show,Eq,Ord)
instance KnownNat n => Prelude.Num (Zn n) where
fromInteger = zn . Prelude.fromInteger
(+) = add
(-) = sub
(*) = mul
abs a = a
negate _ = error "cannot negate Zn: use Foundation Numerical hierarchy for this function to not be exposed to Zn"
signum = Zn . Prelude.signum . unZn
type instance NatNumMaxBound (Zn n) = n
instance KnownNat n => Integral (Zn n) where
fromInteger = zn . Prelude.fromInteger
instance KnownNat n => IsIntegral (Zn n) where
toInteger (Zn n) = toInteger n
instance KnownNat n => IsNatural (Zn n) where
toNatural i = unZn i
-- | Create an element of ℤ/nℤ from a Natural.
--
-- If the value is greater than n, then the value is normalized by using the
-- integer modulus n
zn :: forall n . KnownNat n => Natural -> Zn n
zn v = Zn (v `Prelude.mod` natValNatural (Proxy :: Proxy n))
-- | Create an element of ℤ/nℤ from a type level Nat
znNat :: forall m n . (KnownNat m, KnownNat n, CmpNat m n ~ 'LT) => Proxy m -> Zn n
znNat m = Zn (natValNatural m)
-- | Add 2 Zn
add :: forall n . KnownNat n => Zn n -> Zn n -> Zn n
add (Zn a) (Zn b) = Zn ((a Prelude.+ b) `Prelude.mod` natValNatural (Proxy :: Proxy n))
-- | subtract 2 Zn
sub :: forall n . KnownNat n => Zn n -> Zn n -> Zn n
sub (Zn a) (Zn b) = Zn ((a Prelude.- b) `Prelude.mod` natValNatural (Proxy :: Proxy n))
-- | Multiply 2 Zn
mul :: forall n . KnownNat n => Zn n -> Zn n -> Zn n
mul (Zn a) (Zn b) = Zn ((a Prelude.* b) `Prelude.mod` natValNatural (Proxy :: Proxy n))
|