1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE DefaultSignatures #-}
module Basement.Numerical.Multiplicative
( Multiplicative(..)
, IDivisible(..)
, Divisible(..)
, recip
) where
import Basement.Compat.Base
import Basement.Compat.C.Types
import Basement.Compat.Natural
import Basement.Compat.NumLiteral
import Basement.Numerical.Number
import Basement.Numerical.Additive
import Basement.Types.Word128 (Word128)
import Basement.Types.Word256 (Word256)
import qualified Basement.Types.Word128 as Word128
import qualified Basement.Types.Word256 as Word256
import qualified Prelude
-- | Represent class of things that can be multiplied together
--
-- > x * midentity = x
-- > midentity * x = x
class Multiplicative a where
{-# MINIMAL midentity, (*) #-}
-- | Identity element over multiplication
midentity :: a
-- | Multiplication of 2 elements that result in another element
(*) :: a -> a -> a
-- | Raise to power, repeated multiplication
-- e.g.
-- > a ^ 2 = a * a
-- > a ^ 10 = (a ^ 5) * (a ^ 5) ..
--(^) :: (IsNatural n) => a -> n -> a
(^) :: (IsNatural n, Enum n, IDivisible n) => a -> n -> a
(^) = power
-- | Represent types that supports an euclidian division
--
-- > (x ‘div‘ y) * y + (x ‘mod‘ y) == x
class (Additive a, Multiplicative a) => IDivisible a where
{-# MINIMAL (div, mod) | divMod #-}
div :: a -> a -> a
div a b = fst $ divMod a b
mod :: a -> a -> a
mod a b = snd $ divMod a b
divMod :: a -> a -> (a, a)
divMod a b = (div a b, mod a b)
-- | Support for division between same types
--
-- This is likely to change to represent specific mathematic divisions
class Multiplicative a => Divisible a where
{-# MINIMAL (/) #-}
(/) :: a -> a -> a
infixl 7 *, /
infixr 8 ^
instance Multiplicative Integer where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Int where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Int8 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Int16 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Int32 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Int64 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Natural where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Word where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Word8 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Word16 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Word32 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Word64 where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative Word128 where
midentity = 1
(*) = (Word128.*)
instance Multiplicative Word256 where
midentity = 1
(*) = (Word256.*)
instance Multiplicative Prelude.Float where
midentity = 1.0
(*) = (Prelude.*)
instance Multiplicative Prelude.Double where
midentity = 1.0
(*) = (Prelude.*)
instance Multiplicative Prelude.Rational where
midentity = 1.0
(*) = (Prelude.*)
instance Multiplicative CChar where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CSChar where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CUChar where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CShort where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CUShort where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CInt where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CUInt where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CLong where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CULong where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CPtrdiff where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CSize where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CWchar where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CSigAtomic where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CLLong where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CULLong where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CIntPtr where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CUIntPtr where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CIntMax where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CUIntMax where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CClock where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CTime where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CUSeconds where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CSUSeconds where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative COff where
midentity = 1
(*) = (Prelude.*)
instance Multiplicative CFloat where
midentity = 1.0
(*) = (Prelude.*)
instance Multiplicative CDouble where
midentity = 1.0
(*) = (Prelude.*)
instance IDivisible Integer where
div = Prelude.div
mod = Prelude.mod
instance IDivisible Int where
div = Prelude.div
mod = Prelude.mod
instance IDivisible Int8 where
div = Prelude.div
mod = Prelude.mod
instance IDivisible Int16 where
div = Prelude.div
mod = Prelude.mod
instance IDivisible Int32 where
div = Prelude.div
mod = Prelude.mod
instance IDivisible Int64 where
div = Prelude.div
mod = Prelude.mod
instance IDivisible Natural where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible Word where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible Word8 where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible Word16 where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible Word32 where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible Word64 where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible Word128 where
div = Word128.quot
mod = Word128.rem
instance IDivisible Word256 where
div = Word256.quot
mod = Word256.rem
instance IDivisible CChar where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CSChar where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CUChar where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CShort where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CUShort where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CInt where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CUInt where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CLong where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CULong where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CPtrdiff where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CSize where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CWchar where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CSigAtomic where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CLLong where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CULLong where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CIntPtr where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CUIntPtr where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CIntMax where
div = Prelude.quot
mod = Prelude.rem
instance IDivisible CUIntMax where
div = Prelude.quot
mod = Prelude.rem
instance Divisible Prelude.Rational where
(/) = (Prelude./)
instance Divisible Float where
(/) = (Prelude./)
instance Divisible Double where
(/) = (Prelude./)
instance Divisible CFloat where
(/) = (Prelude./)
instance Divisible CDouble where
(/) = (Prelude./)
recip :: Divisible a => a -> a
recip x = midentity / x
power :: (Enum n, IsNatural n, IDivisible n, Multiplicative a) => a -> n -> a
power a n
| n == 0 = midentity
| otherwise = squaring midentity a n
where
squaring y x i
| i == 0 = y
| i == 1 = x * y
| even i = squaring y (x*x) (i`div`2)
| otherwise = squaring (x*y) (x*x) (pred i`div` 2)
even :: (IDivisible n, IsIntegral n) => n -> Bool
even n = (n `mod` 2) == 0
|