File: List.hs

package info (click to toggle)
haskell-basement 0.0.16-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,048 kB
  • sloc: haskell: 11,336; ansic: 63; makefile: 5
file content (384 lines) | stat: -rw-r--r-- 13,865 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
-- |
-- Module      : Basement.Sized.List
-- License     : BSD-style
-- Maintainer  : Vincent Hanquez <vincent@snarc.org>
-- Stability   : experimental
-- Portability : portable
--
-- A Nat-sized list abstraction
--
-- Using this module is limited to GHC 7.10 and above.
--
{-# LANGUAGE KindSignatures            #-}
{-# LANGUAGE DataKinds                 #-}
{-# LANGUAGE GADTs                     #-}
{-# LANGUAGE TypeOperators             #-}
{-# LANGUAGE TypeFamilies              #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ScopedTypeVariables       #-}
{-# LANGUAGE UndecidableInstances      #-}
{-# LANGUAGE AllowAmbiguousTypes       #-}
{-# LANGUAGE DeriveDataTypeable        #-}
{-# LANGUAGE DeriveGeneric             #-}
{-# LANGUAGE FlexibleContexts          #-}
module Basement.Sized.List
    ( ListN
    , toListN
    , toListN_
    , unListN
    , length
    , create
    , createFrom
    , empty
    , singleton
    , uncons
    , cons
    , unsnoc
    , snoc
    , index
    , indexStatic
    , updateAt
    , map
    , mapi
    , elem
    , foldl
    , foldl'
    , foldl1'
    , scanl'
    , scanl1'
    , foldr
    , foldr1
    , reverse
    , append
    , minimum
    , maximum
    , head
    , tail
    , init
    , take
    , drop
    , splitAt
    , zip, zip3, zip4, zip5
    , unzip
    , zipWith, zipWith3, zipWith4, zipWith5
    , replicate
    -- * Applicative And Monadic
    , replicateM
    , sequence
    , sequence_
    , mapM
    , mapM_
    ) where

import           Data.Proxy
import qualified Data.List
import           Basement.Compat.Base
import           Basement.Compat.CallStack
import           Basement.Compat.Natural
import           Basement.Nat
import           Basement.NormalForm
import           Basement.Numerical.Additive
import           Basement.Numerical.Subtractive
import           Basement.Types.OffsetSize
import           Basement.Compat.ExtList ((!!))
import qualified Prelude
import qualified Control.Monad as M (replicateM, mapM, mapM_, sequence, sequence_)

impossible :: HasCallStack => a
impossible = error "ListN: internal error: the impossible happened"

-- | A Typed-level sized List equivalent to [a]
newtype ListN (n :: Nat) a = ListN { unListN :: [a] }
    deriving (Eq,Ord,Typeable,Generic)

instance Show a => Show (ListN n a) where
    show (ListN l) = show l

instance NormalForm a => NormalForm (ListN n a) where
    toNormalForm (ListN l) = toNormalForm l

-- | Try to create a ListN from a List, succeeding if the length is correct
toListN :: forall (n :: Nat) a . (KnownNat n, NatWithinBound Int n) => [a] -> Maybe (ListN n a)
toListN l
    | expected == Prelude.fromIntegral (Prelude.length l) = Just (ListN l)
    | otherwise                                           = Nothing
  where
    expected = natValInt (Proxy :: Proxy n)

-- | Create a ListN from a List, expecting a given length
--
-- If this list contains more or less than the expected length of the resulting type,
-- then an asynchronous error is raised. use 'toListN' for a more friendly functions
toListN_ :: forall n a . (HasCallStack, NatWithinBound Int n, KnownNat n) => [a] -> ListN n a
toListN_ l
    | expected == got = ListN l
    | otherwise       = error ("toListN_: expecting list of " <> show expected <> " elements, got " <> show got <> " elements")
  where
    expected = natValInt (Proxy :: Proxy n)
    got      = Prelude.length l

-- | performs a monadic action n times, gathering the results in a List of size n.
replicateM :: forall (n :: Nat) m a . (NatWithinBound Int n, Monad m, KnownNat n) => m a -> m (ListN n a)
replicateM action = ListN <$> M.replicateM (Prelude.fromIntegral $ natVal (Proxy :: Proxy n)) action

-- | Evaluate each monadic action in the list sequentially, and collect the results.
sequence :: Monad m => ListN n (m a) -> m (ListN n a)
sequence (ListN l) = ListN <$> M.sequence l

-- | Evaluate each monadic action in the list sequentially, and ignore the results.
sequence_ :: Monad m => ListN n (m a) -> m ()
sequence_ (ListN l) = M.sequence_ l

-- | Map each element of a List to a monadic action, evaluate these
-- actions sequentially and collect the results
mapM :: Monad m => (a -> m b) -> ListN n a -> m (ListN n b)
mapM f (ListN l) = ListN <$> M.mapM f l

-- | Map each element of a List to a monadic action, evaluate these
-- actions sequentially and ignore the results
mapM_ :: Monad m => (a -> m b) -> ListN n a -> m ()
mapM_ f (ListN l) = M.mapM_ f l

-- | Create a list of n elements where each element is the element in argument
replicate :: forall (n :: Nat) a . (NatWithinBound Int n, KnownNat n) => a -> ListN n a
replicate a = ListN $ Prelude.replicate (Prelude.fromIntegral $ natVal (Proxy :: Proxy n)) a

-- | Decompose a list into its head and tail.
uncons :: (1 <= n) => ListN n a -> (a, ListN (n-1) a)
uncons (ListN (x:xs)) = (x, ListN xs)
uncons _ = impossible

-- | prepend an element to the list
cons :: a -> ListN n a -> ListN (n+1) a
cons a (ListN l) = ListN (a : l)

-- | Decompose a list into its first elements and the last.
unsnoc :: (1 <= n) => ListN n a -> (ListN (n-1) a, a)
unsnoc (ListN l) = (ListN $ Data.List.init l, Data.List.last l)

-- | append an element to the list
snoc :: ListN n a -> a -> ListN (n+1) a
snoc (ListN l) a = ListN (l Prelude.++ [a])

-- | Create an empty list of a
empty :: ListN 0 a
empty = ListN []

-- | Get the length of a list
length :: forall a (n :: Nat) . (KnownNat n, NatWithinBound Int n) => ListN n a -> CountOf a
length _ = CountOf $ natValInt (Proxy :: Proxy n)

-- | Create a new list of size n, repeately calling f from 0 to n-1
create :: forall a (n :: Nat) . KnownNat n => (Natural -> a) -> ListN n a
create f = ListN $ Prelude.map (f . Prelude.fromIntegral) [0..(len-1)]
  where
    len = natVal (Proxy :: Proxy n)

-- | Same as create but apply an offset
createFrom :: forall a (n :: Nat) (start :: Nat) . (KnownNat n, KnownNat start)
           => Proxy start -> (Natural -> a) -> ListN n a
createFrom p f = ListN $ Prelude.map (f . Prelude.fromIntegral) [idx..(idx+len-1)]
  where
    len = natVal (Proxy :: Proxy n)
    idx = natVal p

-- | create a list of 1 element
singleton :: a -> ListN 1 a
singleton a = ListN [a]

-- | Check if a list contains the element a
elem :: Eq a => a -> ListN n a -> Bool
elem a (ListN l) = Prelude.elem a l

-- | Append 2 list together returning the new list
append :: ListN n a -> ListN m a -> ListN (n+m) a
append (ListN l1) (ListN l2) = ListN (l1 <> l2)

-- | Get the maximum element of a list
maximum :: (Ord a, 1 <= n) => ListN n a -> a
maximum (ListN l) = Prelude.maximum l

-- | Get the minimum element of a list
minimum :: (Ord a, 1 <= n) => ListN n a -> a
minimum (ListN l) = Prelude.minimum l

-- | Get the head element of a list
head :: (1 <= n) => ListN n a -> a
head (ListN (x:_)) = x
head _ = impossible

-- | Get the tail of a list
tail :: (1 <= n) => ListN n a -> ListN (n-1) a
tail (ListN (_:xs)) = ListN xs
tail _ = impossible

-- | Get the list with the last element missing
init :: (1 <= n) => ListN n a -> ListN (n-1) a
init (ListN l) = ListN $ Data.List.init l

-- | Take m elements from the beggining of the list.
--
-- The number of elements need to be less or equal to the list in argument
take :: forall a (m :: Nat) (n :: Nat) . (KnownNat m, NatWithinBound Int m, m <= n) => ListN n a -> ListN m a
take (ListN l) = ListN (Prelude.take n l)
  where n = natValInt (Proxy :: Proxy m)

-- | Drop elements from a list keeping the m remaining elements
drop :: forall a d (m :: Nat) (n :: Nat) . (KnownNat d, NatWithinBound Int d, (n - m) ~ d, m <= n) => ListN n a -> ListN m a
drop (ListN l) = ListN (Prelude.drop n l)
  where n = natValInt (Proxy :: Proxy d)

-- | Split a list into two, returning 2 lists
splitAt :: forall a d (m :: Nat) (n :: Nat) . (KnownNat d, NatWithinBound Int d, (n - m) ~ d, m <= n) => ListN n a -> (ListN m a, ListN (n-m) a)
splitAt (ListN l) = let (l1, l2) = Prelude.splitAt n l in (ListN l1, ListN l2)
  where n = natValInt (Proxy :: Proxy d)

-- | Get the i'th elements
--
-- This only works with TypeApplication:
--
-- > indexStatic @1 (toListN_ [1,2,3] :: ListN 3 Int)
indexStatic :: forall i n a . (KnownNat i, CmpNat i n ~ 'LT, Offsetable a i) => ListN n a -> a
indexStatic (ListN l) = l !! (natValOffset (Proxy :: Proxy i))

-- | Get the i'the element
index :: ListN n ty -> Offset ty -> ty
index (ListN l) ofs = l !! ofs

-- | Update the value in a list at a specific location
updateAt :: forall n a
         .  Offset a
         -> (a -> a)
         -> ListN n a
         -> ListN n a
updateAt o f (ListN l) = ListN (doUpdate 0 l)
  where doUpdate _ []     = []
        doUpdate i (x:xs)
            | i == o      = f x : xs
            | otherwise   = x : doUpdate (i+1) xs

-- | Map all elements in a list
map :: (a -> b) -> ListN n a -> ListN n b
map f (ListN l) = ListN (Prelude.map f l)

-- | Map all elements in a list with an additional index
mapi :: (Natural -> a -> b) -> ListN n a -> ListN n b
mapi f (ListN l) = ListN . loop 0 $ l
  where loop _ []     = []
        loop i (x:xs) = f i x : loop (i+1) xs

-- | Fold all elements from left
foldl :: (b -> a -> b) -> b -> ListN n a -> b
foldl f acc (ListN l) = Prelude.foldl f acc l

-- | Fold all elements from left strictly
foldl' :: (b -> a -> b) -> b -> ListN n a -> b
foldl' f acc (ListN l) = Data.List.foldl' f acc l

-- | Fold all elements from left strictly with a first element
-- as the accumulator
foldl1' :: (1 <= n) => (a -> a -> a) -> ListN n a -> a
foldl1' f (ListN l) = Data.List.foldl1' f l

-- | Fold all elements from right
foldr :: (a -> b -> b) -> b -> ListN n a -> b
foldr f acc (ListN l) = Prelude.foldr f acc l

-- | Fold all elements from right assuming at least one element is in the list.
foldr1 :: (1 <= n) => (a -> a -> a) -> ListN n a -> a
foldr1 f (ListN l) = Prelude.foldr1 f l

-- | 'scanl' is similar to 'foldl', but returns a list of successive
-- reduced values from the left
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
scanl' :: (b -> a -> b) -> b -> ListN n a -> ListN (n+1) b
scanl' f initialAcc (ListN start) = ListN (go initialAcc start)
  where
    go !acc l = acc : case l of
                        []     -> []
                        (x:xs) -> go (f acc x) xs

-- | 'scanl1' is a variant of 'scanl' that has no starting value argument:
--
-- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
scanl1' :: (a -> a -> a) -> ListN n a -> ListN n a
scanl1' f (ListN l) = case l of
                        []     -> ListN []
                        (x:xs) -> ListN $ Data.List.scanl' f x xs

-- | Reverse a list
reverse :: ListN n a -> ListN n a
reverse (ListN l) = ListN (Prelude.reverse l)

-- | Zip 2 lists of the same size, returning a new list of
-- the tuple of each elements
zip :: ListN n a -> ListN n b -> ListN n (a,b)
zip (ListN l1) (ListN l2) = ListN (Prelude.zip l1 l2)

-- | Unzip a list of tuple, to 2 List of the deconstructed tuples
unzip :: ListN n (a,b) -> (ListN n a, ListN n b)
unzip l = (map fst l, map snd l)

-- | Zip 3 lists of the same size
zip3 :: ListN n a -> ListN n b -> ListN n c -> ListN n (a,b,c)
zip3 (ListN x1) (ListN x2) (ListN x3) = ListN (loop x1 x2 x3)
  where loop (l1:l1s) (l2:l2s) (l3:l3s) = (l1,l2,l3) : loop l1s l2s l3s
        loop []       _        _        = []
        loop _        _        _        = impossible

-- | Zip 4 lists of the same size
zip4 :: ListN n a -> ListN n b -> ListN n c -> ListN n d -> ListN n (a,b,c,d)
zip4 (ListN x1) (ListN x2) (ListN x3) (ListN x4) = ListN (loop x1 x2 x3 x4)
  where loop (l1:l1s) (l2:l2s) (l3:l3s) (l4:l4s) = (l1,l2,l3,l4) : loop l1s l2s l3s l4s
        loop []       _        _        _        = []
        loop _        _        _        _        = impossible

-- | Zip 5 lists of the same size
zip5 :: ListN n a -> ListN n b -> ListN n c -> ListN n d -> ListN n e -> ListN n (a,b,c,d,e)
zip5 (ListN x1) (ListN x2) (ListN x3) (ListN x4) (ListN x5) = ListN (loop x1 x2 x3 x4 x5)
  where loop (l1:l1s) (l2:l2s) (l3:l3s) (l4:l4s) (l5:l5s) = (l1,l2,l3,l4,l5) : loop l1s l2s l3s l4s l5s
        loop []       _        _        _        _        = []
        loop _        _        _        _        _        = impossible

-- | Zip 2 lists using a function
zipWith :: (a -> b -> x) -> ListN n a -> ListN n b -> ListN n x
zipWith f (ListN (v1:vs)) (ListN (w1:ws)) = ListN (f v1 w1 : unListN (zipWith f (ListN vs) (ListN ws)))
zipWith _ (ListN [])       _ = ListN []
zipWith _ _                _ = impossible

-- | Zip 3 lists using a function
zipWith3 :: (a -> b -> c -> x)
         -> ListN n a
         -> ListN n b
         -> ListN n c
         -> ListN n x
zipWith3 f (ListN (v1:vs)) (ListN (w1:ws)) (ListN (x1:xs)) =
    ListN (f v1 w1 x1 : unListN (zipWith3 f (ListN vs) (ListN ws) (ListN xs)))
zipWith3 _ (ListN []) _       _ = ListN []
zipWith3 _ _          _       _ = impossible

-- | Zip 4 lists using a function
zipWith4 :: (a -> b -> c -> d -> x)
         -> ListN n a
         -> ListN n b
         -> ListN n c
         -> ListN n d
         -> ListN n x
zipWith4 f (ListN (v1:vs)) (ListN (w1:ws)) (ListN (x1:xs)) (ListN (y1:ys)) =
    ListN (f v1 w1 x1 y1 : unListN (zipWith4 f (ListN vs) (ListN ws) (ListN xs) (ListN ys)))
zipWith4 _ (ListN []) _       _       _ = ListN []
zipWith4 _ _          _       _       _ = impossible

-- | Zip 5 lists using a function
zipWith5 :: (a -> b -> c -> d -> e -> x)
         -> ListN n a
         -> ListN n b
         -> ListN n c
         -> ListN n d
         -> ListN n e
         -> ListN n x
zipWith5 f (ListN (v1:vs)) (ListN (w1:ws)) (ListN (x1:xs)) (ListN (y1:ys)) (ListN (z1:zs)) =
    ListN (f v1 w1 x1 y1 z1 : unListN (zipWith5 f (ListN vs) (ListN ws) (ListN xs) (ListN ys) (ListN zs)))
zipWith5 _ (ListN []) _       _       _       _ = ListN []
zipWith5 _ _          _       _       _       _ = impossible