1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
-- |
-- Module : Basement.Sized.List
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : portable
--
-- A Nat-sized list abstraction
--
-- Using this module is limited to GHC 7.10 and above.
--
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
module Basement.Sized.List
( ListN
, toListN
, toListN_
, unListN
, length
, create
, createFrom
, empty
, singleton
, uncons
, cons
, unsnoc
, snoc
, index
, indexStatic
, updateAt
, map
, mapi
, elem
, foldl
, foldl'
, foldl1'
, scanl'
, scanl1'
, foldr
, foldr1
, reverse
, append
, minimum
, maximum
, head
, tail
, init
, take
, drop
, splitAt
, zip, zip3, zip4, zip5
, unzip
, zipWith, zipWith3, zipWith4, zipWith5
, replicate
-- * Applicative And Monadic
, replicateM
, sequence
, sequence_
, mapM
, mapM_
) where
import Data.Proxy
import qualified Data.List
import Basement.Compat.Base
import Basement.Compat.CallStack
import Basement.Compat.Natural
import Basement.Nat
import Basement.NormalForm
import Basement.Numerical.Additive
import Basement.Numerical.Subtractive
import Basement.Types.OffsetSize
import Basement.Compat.ExtList ((!!))
import qualified Prelude
import qualified Control.Monad as M (replicateM, mapM, mapM_, sequence, sequence_)
impossible :: HasCallStack => a
impossible = error "ListN: internal error: the impossible happened"
-- | A Typed-level sized List equivalent to [a]
newtype ListN (n :: Nat) a = ListN { unListN :: [a] }
deriving (Eq,Ord,Typeable,Generic)
instance Show a => Show (ListN n a) where
show (ListN l) = show l
instance NormalForm a => NormalForm (ListN n a) where
toNormalForm (ListN l) = toNormalForm l
-- | Try to create a ListN from a List, succeeding if the length is correct
toListN :: forall (n :: Nat) a . (KnownNat n, NatWithinBound Int n) => [a] -> Maybe (ListN n a)
toListN l
| expected == Prelude.fromIntegral (Prelude.length l) = Just (ListN l)
| otherwise = Nothing
where
expected = natValInt (Proxy :: Proxy n)
-- | Create a ListN from a List, expecting a given length
--
-- If this list contains more or less than the expected length of the resulting type,
-- then an asynchronous error is raised. use 'toListN' for a more friendly functions
toListN_ :: forall n a . (HasCallStack, NatWithinBound Int n, KnownNat n) => [a] -> ListN n a
toListN_ l
| expected == got = ListN l
| otherwise = error ("toListN_: expecting list of " <> show expected <> " elements, got " <> show got <> " elements")
where
expected = natValInt (Proxy :: Proxy n)
got = Prelude.length l
-- | performs a monadic action n times, gathering the results in a List of size n.
replicateM :: forall (n :: Nat) m a . (NatWithinBound Int n, Monad m, KnownNat n) => m a -> m (ListN n a)
replicateM action = ListN <$> M.replicateM (Prelude.fromIntegral $ natVal (Proxy :: Proxy n)) action
-- | Evaluate each monadic action in the list sequentially, and collect the results.
sequence :: Monad m => ListN n (m a) -> m (ListN n a)
sequence (ListN l) = ListN <$> M.sequence l
-- | Evaluate each monadic action in the list sequentially, and ignore the results.
sequence_ :: Monad m => ListN n (m a) -> m ()
sequence_ (ListN l) = M.sequence_ l
-- | Map each element of a List to a monadic action, evaluate these
-- actions sequentially and collect the results
mapM :: Monad m => (a -> m b) -> ListN n a -> m (ListN n b)
mapM f (ListN l) = ListN <$> M.mapM f l
-- | Map each element of a List to a monadic action, evaluate these
-- actions sequentially and ignore the results
mapM_ :: Monad m => (a -> m b) -> ListN n a -> m ()
mapM_ f (ListN l) = M.mapM_ f l
-- | Create a list of n elements where each element is the element in argument
replicate :: forall (n :: Nat) a . (NatWithinBound Int n, KnownNat n) => a -> ListN n a
replicate a = ListN $ Prelude.replicate (Prelude.fromIntegral $ natVal (Proxy :: Proxy n)) a
-- | Decompose a list into its head and tail.
uncons :: (1 <= n) => ListN n a -> (a, ListN (n-1) a)
uncons (ListN (x:xs)) = (x, ListN xs)
uncons _ = impossible
-- | prepend an element to the list
cons :: a -> ListN n a -> ListN (n+1) a
cons a (ListN l) = ListN (a : l)
-- | Decompose a list into its first elements and the last.
unsnoc :: (1 <= n) => ListN n a -> (ListN (n-1) a, a)
unsnoc (ListN l) = (ListN $ Data.List.init l, Data.List.last l)
-- | append an element to the list
snoc :: ListN n a -> a -> ListN (n+1) a
snoc (ListN l) a = ListN (l Prelude.++ [a])
-- | Create an empty list of a
empty :: ListN 0 a
empty = ListN []
-- | Get the length of a list
length :: forall a (n :: Nat) . (KnownNat n, NatWithinBound Int n) => ListN n a -> CountOf a
length _ = CountOf $ natValInt (Proxy :: Proxy n)
-- | Create a new list of size n, repeately calling f from 0 to n-1
create :: forall a (n :: Nat) . KnownNat n => (Natural -> a) -> ListN n a
create f = ListN $ Prelude.map (f . Prelude.fromIntegral) [0..(len-1)]
where
len = natVal (Proxy :: Proxy n)
-- | Same as create but apply an offset
createFrom :: forall a (n :: Nat) (start :: Nat) . (KnownNat n, KnownNat start)
=> Proxy start -> (Natural -> a) -> ListN n a
createFrom p f = ListN $ Prelude.map (f . Prelude.fromIntegral) [idx..(idx+len-1)]
where
len = natVal (Proxy :: Proxy n)
idx = natVal p
-- | create a list of 1 element
singleton :: a -> ListN 1 a
singleton a = ListN [a]
-- | Check if a list contains the element a
elem :: Eq a => a -> ListN n a -> Bool
elem a (ListN l) = Prelude.elem a l
-- | Append 2 list together returning the new list
append :: ListN n a -> ListN m a -> ListN (n+m) a
append (ListN l1) (ListN l2) = ListN (l1 <> l2)
-- | Get the maximum element of a list
maximum :: (Ord a, 1 <= n) => ListN n a -> a
maximum (ListN l) = Prelude.maximum l
-- | Get the minimum element of a list
minimum :: (Ord a, 1 <= n) => ListN n a -> a
minimum (ListN l) = Prelude.minimum l
-- | Get the head element of a list
head :: (1 <= n) => ListN n a -> a
head (ListN (x:_)) = x
head _ = impossible
-- | Get the tail of a list
tail :: (1 <= n) => ListN n a -> ListN (n-1) a
tail (ListN (_:xs)) = ListN xs
tail _ = impossible
-- | Get the list with the last element missing
init :: (1 <= n) => ListN n a -> ListN (n-1) a
init (ListN l) = ListN $ Data.List.init l
-- | Take m elements from the beggining of the list.
--
-- The number of elements need to be less or equal to the list in argument
take :: forall a (m :: Nat) (n :: Nat) . (KnownNat m, NatWithinBound Int m, m <= n) => ListN n a -> ListN m a
take (ListN l) = ListN (Prelude.take n l)
where n = natValInt (Proxy :: Proxy m)
-- | Drop elements from a list keeping the m remaining elements
drop :: forall a d (m :: Nat) (n :: Nat) . (KnownNat d, NatWithinBound Int d, (n - m) ~ d, m <= n) => ListN n a -> ListN m a
drop (ListN l) = ListN (Prelude.drop n l)
where n = natValInt (Proxy :: Proxy d)
-- | Split a list into two, returning 2 lists
splitAt :: forall a d (m :: Nat) (n :: Nat) . (KnownNat d, NatWithinBound Int d, (n - m) ~ d, m <= n) => ListN n a -> (ListN m a, ListN (n-m) a)
splitAt (ListN l) = let (l1, l2) = Prelude.splitAt n l in (ListN l1, ListN l2)
where n = natValInt (Proxy :: Proxy d)
-- | Get the i'th elements
--
-- This only works with TypeApplication:
--
-- > indexStatic @1 (toListN_ [1,2,3] :: ListN 3 Int)
indexStatic :: forall i n a . (KnownNat i, CmpNat i n ~ 'LT, Offsetable a i) => ListN n a -> a
indexStatic (ListN l) = l !! (natValOffset (Proxy :: Proxy i))
-- | Get the i'the element
index :: ListN n ty -> Offset ty -> ty
index (ListN l) ofs = l !! ofs
-- | Update the value in a list at a specific location
updateAt :: forall n a
. Offset a
-> (a -> a)
-> ListN n a
-> ListN n a
updateAt o f (ListN l) = ListN (doUpdate 0 l)
where doUpdate _ [] = []
doUpdate i (x:xs)
| i == o = f x : xs
| otherwise = x : doUpdate (i+1) xs
-- | Map all elements in a list
map :: (a -> b) -> ListN n a -> ListN n b
map f (ListN l) = ListN (Prelude.map f l)
-- | Map all elements in a list with an additional index
mapi :: (Natural -> a -> b) -> ListN n a -> ListN n b
mapi f (ListN l) = ListN . loop 0 $ l
where loop _ [] = []
loop i (x:xs) = f i x : loop (i+1) xs
-- | Fold all elements from left
foldl :: (b -> a -> b) -> b -> ListN n a -> b
foldl f acc (ListN l) = Prelude.foldl f acc l
-- | Fold all elements from left strictly
foldl' :: (b -> a -> b) -> b -> ListN n a -> b
foldl' f acc (ListN l) = Data.List.foldl' f acc l
-- | Fold all elements from left strictly with a first element
-- as the accumulator
foldl1' :: (1 <= n) => (a -> a -> a) -> ListN n a -> a
foldl1' f (ListN l) = Data.List.foldl1' f l
-- | Fold all elements from right
foldr :: (a -> b -> b) -> b -> ListN n a -> b
foldr f acc (ListN l) = Prelude.foldr f acc l
-- | Fold all elements from right assuming at least one element is in the list.
foldr1 :: (1 <= n) => (a -> a -> a) -> ListN n a -> a
foldr1 f (ListN l) = Prelude.foldr1 f l
-- | 'scanl' is similar to 'foldl', but returns a list of successive
-- reduced values from the left
--
-- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
scanl' :: (b -> a -> b) -> b -> ListN n a -> ListN (n+1) b
scanl' f initialAcc (ListN start) = ListN (go initialAcc start)
where
go !acc l = acc : case l of
[] -> []
(x:xs) -> go (f acc x) xs
-- | 'scanl1' is a variant of 'scanl' that has no starting value argument:
--
-- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]
scanl1' :: (a -> a -> a) -> ListN n a -> ListN n a
scanl1' f (ListN l) = case l of
[] -> ListN []
(x:xs) -> ListN $ Data.List.scanl' f x xs
-- | Reverse a list
reverse :: ListN n a -> ListN n a
reverse (ListN l) = ListN (Prelude.reverse l)
-- | Zip 2 lists of the same size, returning a new list of
-- the tuple of each elements
zip :: ListN n a -> ListN n b -> ListN n (a,b)
zip (ListN l1) (ListN l2) = ListN (Prelude.zip l1 l2)
-- | Unzip a list of tuple, to 2 List of the deconstructed tuples
unzip :: ListN n (a,b) -> (ListN n a, ListN n b)
unzip l = (map fst l, map snd l)
-- | Zip 3 lists of the same size
zip3 :: ListN n a -> ListN n b -> ListN n c -> ListN n (a,b,c)
zip3 (ListN x1) (ListN x2) (ListN x3) = ListN (loop x1 x2 x3)
where loop (l1:l1s) (l2:l2s) (l3:l3s) = (l1,l2,l3) : loop l1s l2s l3s
loop [] _ _ = []
loop _ _ _ = impossible
-- | Zip 4 lists of the same size
zip4 :: ListN n a -> ListN n b -> ListN n c -> ListN n d -> ListN n (a,b,c,d)
zip4 (ListN x1) (ListN x2) (ListN x3) (ListN x4) = ListN (loop x1 x2 x3 x4)
where loop (l1:l1s) (l2:l2s) (l3:l3s) (l4:l4s) = (l1,l2,l3,l4) : loop l1s l2s l3s l4s
loop [] _ _ _ = []
loop _ _ _ _ = impossible
-- | Zip 5 lists of the same size
zip5 :: ListN n a -> ListN n b -> ListN n c -> ListN n d -> ListN n e -> ListN n (a,b,c,d,e)
zip5 (ListN x1) (ListN x2) (ListN x3) (ListN x4) (ListN x5) = ListN (loop x1 x2 x3 x4 x5)
where loop (l1:l1s) (l2:l2s) (l3:l3s) (l4:l4s) (l5:l5s) = (l1,l2,l3,l4,l5) : loop l1s l2s l3s l4s l5s
loop [] _ _ _ _ = []
loop _ _ _ _ _ = impossible
-- | Zip 2 lists using a function
zipWith :: (a -> b -> x) -> ListN n a -> ListN n b -> ListN n x
zipWith f (ListN (v1:vs)) (ListN (w1:ws)) = ListN (f v1 w1 : unListN (zipWith f (ListN vs) (ListN ws)))
zipWith _ (ListN []) _ = ListN []
zipWith _ _ _ = impossible
-- | Zip 3 lists using a function
zipWith3 :: (a -> b -> c -> x)
-> ListN n a
-> ListN n b
-> ListN n c
-> ListN n x
zipWith3 f (ListN (v1:vs)) (ListN (w1:ws)) (ListN (x1:xs)) =
ListN (f v1 w1 x1 : unListN (zipWith3 f (ListN vs) (ListN ws) (ListN xs)))
zipWith3 _ (ListN []) _ _ = ListN []
zipWith3 _ _ _ _ = impossible
-- | Zip 4 lists using a function
zipWith4 :: (a -> b -> c -> d -> x)
-> ListN n a
-> ListN n b
-> ListN n c
-> ListN n d
-> ListN n x
zipWith4 f (ListN (v1:vs)) (ListN (w1:ws)) (ListN (x1:xs)) (ListN (y1:ys)) =
ListN (f v1 w1 x1 y1 : unListN (zipWith4 f (ListN vs) (ListN ws) (ListN xs) (ListN ys)))
zipWith4 _ (ListN []) _ _ _ = ListN []
zipWith4 _ _ _ _ _ = impossible
-- | Zip 5 lists using a function
zipWith5 :: (a -> b -> c -> d -> e -> x)
-> ListN n a
-> ListN n b
-> ListN n c
-> ListN n d
-> ListN n e
-> ListN n x
zipWith5 f (ListN (v1:vs)) (ListN (w1:ws)) (ListN (x1:xs)) (ListN (y1:ys)) (ListN (z1:zs)) =
ListN (f v1 w1 x1 y1 z1 : unListN (zipWith5 f (ListN vs) (ListN ws) (ListN xs) (ListN ys) (ListN zs)))
zipWith5 _ (ListN []) _ _ _ _ = ListN []
zipWith5 _ _ _ _ _ _ = impossible
|