File: Tests.hs

package info (click to toggle)
haskell-bimap 0.5.0-3
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 108 kB
  • sloc: haskell: 745; makefile: 6
file content (508 lines) | stat: -rw-r--r-- 14,393 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
module Test.Tests where

import Data.List (nub, sort)
import qualified Data.Set as S
import Prelude hiding (null, lookup, filter,map)
import qualified Prelude as P
import Test.QuickCheck
import Control.Applicative((<$>))

import Data.Bimap


(.:) = (.).(.)

instance (Ord a, Arbitrary a, Ord b, Arbitrary b)
    => Arbitrary (Bimap a b) where
    arbitrary = fromList `fmap` arbitrary

instance (Ord a, CoArbitrary a, Ord b, CoArbitrary b)
    => CoArbitrary (Bimap a b) where
    coarbitrary = coarbitrary . toList

-- generator for filter/partition classification functions
data FilterFunc a b = FilterFunc String (a -> b -> Bool)
instance Show (FilterFunc a b) where
    show (FilterFunc desc _) = desc
instance (Integral a, Arbitrary a, Integral b, Arbitrary b)
    => Arbitrary (FilterFunc a b) where
    arbitrary = do
        pivot <- (arbitrary :: Gen Integer)
        return $ FilterFunc
            ("(\\x y -> x - y < " ++ show pivot ++ ")")
            (\x y -> fromIntegral x - fromIntegral y < pivot)
instance (Integral a, CoArbitrary a, Integral b, CoArbitrary b)
    => CoArbitrary (FilterFunc a b) where
    coarbitrary _ gen = do
        x <- arbitrary
        coarbitrary (x :: Int) gen


-- empty bimap has zero size
prop_size_empty = size empty == 0

-- empty bimap is null
prop_null_empty = null empty

-- when converting from a list and back, each pair in the latter
-- list was originally in the former list
-- (heh, this is probably made redundant by polymorphism)
prop_fromList_toList xs =
    let xs' = toList . fromList $ xs
    in all (flip elem xs) xs'
    where
    _ = xs :: [(Int, Integer)]

-- when converting a list to a bimap, each list element either
-- ends up in the bimap, or could conceivably have been clobbered
prop_fromList_account xs = all (\x -> isMember x || notUnique x) xs
    where
    _ = xs :: [(Int, Integer)]
    bi = fromList xs
    isMember x = x `pairMember` bi
    notUnique (x, y) = 
        ((>1) . length . P.filter (== x) . P.map fst $ xs) ||
        ((>1) . length . P.filter (== y) . P.map snd $ xs)

-- a bimap created from a list is no larger than the list
prop_fromList_size xs = (size $ fromList xs) <= length xs
    where
    _ = xs :: [(Int, Integer)]

-- a monotone bimap can be reconstituted via fromAscPairList
prop_fromAscPairList_reconstitute xs = and
    [ valid bi'
    , (bi == bi')
    ]
    where
    xs' = zip (sort $ P.map fst xs) (sort $ P.map snd xs)
    bi :: Bimap Int Integer
    bi = fromList xs'
    bi' = fromAscPairList . toAscList $ bi

-- fromAscPairList will never produce an invalid bimap
prop_fromAscPairList_check xs = valid bi
    where
    xs' = zip (nub $ sort $ P.map fst xs) (nub $ sort $ P.map snd xs)
    bi :: Bimap Int Integer
    bi = fromAscPairList xs'

-- if a pair is a member of the bimap, then both elements are present
-- and associated with each other
prop_pairMember bi k v =
    ((k, v) `pairMember` bi) == and
        [ k `member`  bi
        , v `memberR` bi
        , lookup  k bi == Just v
        , lookupR v bi == Just k
        ]
    where
    _ = bi :: Bimap Int Integer

-- an inserted pair ends up in the bimap
prop_insert_member bi k v = (k, v) `pairMember` (insert k v bi)
    where
    _ = bi :: Bimap Int Integer

-- if we insert a pair with an existing value, the old value's twin
-- is no longer in the bimap
prop_clobberL bi b' =
    (not . null $ bi) && (b' `notMemberR` bi)
    ==>
    (a, b) `pairNotMember` insert a b' bi
    where
    (a, b) = head . toList $ bi :: (Int, Integer)

prop_clobberR bi a' =
    (not . null $ bi) && (a' `notMember` bi)
    ==>
    (a, b) `pairNotMember` insert a' b bi
    where
    (a, b) = head . toList $ bi :: (Int, Integer)

-- if we politely insert two members, neither of which is present,
-- then the two are successfully associated
prop_tryInsert_member bi k v = (k, v) `neitherMember` bi ==>
    pairMember (k, v) (tryInsert k v bi)
    where
    _ = bi :: Bimap Int Integer
    neitherMember (k, v) bi = k `notMember` bi && v `notMemberR` bi

-- polite insertion will never remove existing associations
prop_tryInsert_not_clobber bi k v =
    all (flip pairMember $ tryInsert k v bi) (toList bi)
    where
    _ = bi :: Bimap Int Integer

-- an arbitrary bimap is valid
prop_valid bi = valid bi
    where
    _ = bi :: Bimap Int Integer

-- if x maps to y, then y maps to x
prop_member_twin bi = flip all (toList bi) $ \(x, y) -> and
    [ (bi !  x) `memberR` bi
    , (bi !> y) `member`  bi
    ]
    where
    _ = bi :: Bimap Int Integer

-- deleting an element removes it from the map
prop_delete bi = flip all (toList bi) $ \(x, y) -> and
    [ x `notMember`  delete  x bi
    , y `notMemberR` deleteR y bi
    ]
    where
    _ = bi :: Bimap Int Integer

-- deleting an element removes its twin from the map
prop_delete_twin bi = flip all (toList bi) $ \(x, y) -> and
    [ (bi !  x) `notMemberR` delete  x bi
    , (bi !> y) `notMember`  deleteR y bi
    ]
    where
    _ = bi :: Bimap Int Integer

-- adjust and fmap are similar
prop_adjust_fmap bi a = l === r
  where
  l = lookup a $ adjust f a bi :: Maybe Integer
  r = f <$> lookup a bi
  _ = bi :: Bimap Int Integer
  f = (1-)

prop_adjustR_fmap bi b = l == r
  where
  l = lookupR b $ adjustR f b bi :: Maybe Int
  r = f <$> lookupR b bi
  _ = bi :: Bimap Int Integer
  f = (3*)

-- a singleton bimap is valid, has one association, and the two
-- given values map to each other
prop_singleton x y = let bi = singleton x y in and
    [ valid bi
    , (x, y) `pairMember` bi
    , (bi !  x) == y
    , (bi !> y) == x
    , size bi == 1
    ]
    where
    _ = (x, y) :: (Int, Integer)

-- an always-true filter makes no changes
prop_filter_true bi =
    bi == filter (curry $ const True) bi
    where
    _ = bi :: Bimap Int Integer

-- an always-false filter gives an empty result
prop_filter_false bi =
    null $ filter (curry $ const False) bi
    where
    _ = bi :: Bimap Int Integer

-- all elements of the projection satisfy the predicate, and all
-- elements of the rejection do not
prop_partition_agree bi (FilterFunc _ ff) = and
    [ all (      uncurry ff) (toList projection)
    , all (not . uncurry ff) (toList rejection)
    ]
    where
    _ = bi :: Bimap Int Integer
    (projection, rejection) = partition ff bi

-- the two halves of a partition are disjoint
prop_partition_disjoint bi (FilterFunc _ ff) =
    S.null $ S.intersection (asSet projection) (asSet rejection)
    where
    _ = bi :: Bimap Int Integer
    (projection, rejection) = partition ff bi
    asSet = S.fromList . toList

-- the two halves of a partition contain the elements of the original
-- bimap
prop_partition_union bi (FilterFunc _ ff) =
    (==) (asSet bi) $
        S.union (asSet projection) (asSet rejection)
    where
    _ = bi :: Bimap Int Integer
    (projection, rejection) = partition ff bi
    asSet = S.fromList . toList

-- the two halves of a partition agree with individual filters
prop_partition_filter bi (FilterFunc _ ff) = and
    [ projection == filter (       ff) bi
    , rejection  == filter (not .: ff) bi
    ]
    where
    _ = bi :: Bimap Int Integer
    (projection, rejection) = partition ff bi

-- partition and filter produce valid results
prop_partition_filter_valid bi (FilterFunc _ ff) = all valid
    [ projection
    , rejection
    , filter (       ff) bi
    , filter (not .: ff) bi
    ]
    where
    _ = bi :: Bimap Int Integer
    (projection, rejection) = partition ff bi

-- twist is its own inverse
prop_twist_twist bi =
    bi == (twist . twist $ bi)
    where
    _ = bi :: Bimap Int Integer

-- the property (fromList == fromAList . reverse) only holds
-- if either the left or right values are all distinct
prop_fromList_fromAList xs = and
    [ fromList  ys == fromAList rys
    , fromList rys == fromAList  ys
    ]
    where
    ys = xs `zip` [1..] :: [(Int, Integer)]
    rys = reverse ys

swap (x, y) = (y, x)

-- deleteFindMin and deleteMin agree
prop_deleteMin_is_delete bi = not (null bi) ==>
    snd (deleteFindMin bi) == deleteMin bi
    where
    _ = bi :: Bimap Int Integer

-- deleteFindMin and findMin agree
prop_deleteMin_is_find bi = not (null bi) ==>
    fst (deleteFindMin bi) == findMin bi
    where
    _ = bi :: Bimap Int Integer

-- elements removed by deleteFindMin are no longer in the bimap
prop_deleteMin_deletes bi = not (null bi) ==>
    fst (deleteFindMin bi) `pairNotMember` snd (deleteFindMin bi)
    where
    _ = bi :: Bimap Int Integer

-- findMin finds a member of the map
prop_findMin_member bi = not (null bi) ==>
    findMin bi `pairMember` bi
    where
    _ = bi :: Bimap Int Integer

-- the minimum of a singleton bimap is its contents
prop_singleton_is_findMin x y = findMin bi == (x, y)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

-- deleting the minimum of a singleton leaves it empty
prop_singleton_deleteMin_empty x y = null (deleteMin bi)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

-- the minimum of a bimap is <= all other elements
prop_findMin_is_minimal bi = all (\ (a, _) -> a >= x) lst
    where
    lst = toList bi
    _ = bi :: Bimap Int Integer
    x = fst . findMin $ bi

prop_deleteMinR_is_delete bi = not (null bi) ==>
    snd (deleteFindMinR bi) == deleteMinR bi 
    where
    _ = bi :: Bimap Int Integer

prop_deleteMinR_is_find bi = not (null bi) ==>
    fst (deleteFindMinR bi) == findMinR bi 
    where
    _ = bi :: Bimap Int Integer

prop_deleteMinR_deletes bi = not (null bi) ==>
    (swap . fst) (deleteFindMinR bi) `pairNotMember` snd (deleteFindMinR bi)
    where
    _ = bi :: Bimap Int Integer

prop_findMinR_member bi = not (null bi) ==>
    swap (findMinR bi) `pairMember` bi
    where
    _ = bi :: Bimap Int Integer
        
prop_singleton_is_findMinR x y = findMinR bi == (y, x)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

prop_singleton_deleteMinR_empty x y = null (deleteMinR bi)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

prop_findMinR_is_minimal bi = all (\ (_, b) -> b >= y) lst
    where
    lst = toList bi
    _ = bi :: Bimap Int Integer
    y = fst . findMinR $ bi

prop_deleteMax_is_delete bi = not (null bi) ==>
    snd (deleteFindMax bi) == deleteMax bi
    where
    _ = bi :: Bimap Int Integer

prop_deleteMax_is_find bi = not (null bi) ==>
    fst (deleteFindMax bi) == findMax bi
    where
    _ = bi :: Bimap Int Integer

prop_deleteMax_deletes bi = not (null bi) ==>
    fst (deleteFindMax bi) `pairNotMember` snd (deleteFindMax bi)
    where
    _ = bi :: Bimap Int Integer

prop_findMax_member bi = not (null bi) ==>
    findMax bi `pairMember` bi
    where
    _ = bi :: Bimap Int Integer
        
prop_singleton_is_findMax x y = findMax bi == (x, y)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

prop_singleton_deleteMax_empty x y = null (deleteMax bi)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

prop_findMax_is_maximal bi = all (\ (a, _) -> a <= x) lst
    where
    lst = toList bi
    _ = bi :: Bimap Int Integer
    x = fst . findMax $ bi

prop_deleteMaxR_is_delete bi = not (null bi) ==>
    snd (deleteFindMaxR bi) == deleteMaxR bi 
    where
    _ = bi :: Bimap Int Integer

prop_deleteMaxR_is_find bi = not (null bi) ==>
    fst (deleteFindMaxR bi) == findMaxR bi
    where
    _ = bi :: Bimap Int Integer

prop_deleteMaxR_deletes bi = not (null bi) ==>
    (swap . fst) (deleteFindMaxR bi) `pairNotMember` snd (deleteFindMaxR bi)
    where
    _ = bi :: Bimap Int Integer

prop_findMaxR_member bi = not (null bi) ==>
    swap (findMaxR bi) `pairMember` bi
    where
    _ = bi :: Bimap Int Integer
        
prop_singleton_is_findMaxR x y = findMaxR bi == (y, x)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

prop_singleton_deleteMaxR_empty x y = null (deleteMaxR bi)
    where
    bi :: Bimap Int Integer
    bi = singleton x y

prop_findMaxR_is_maximal bi = all (\ (_, b) -> b <= y) lst
    where
    lst = toList bi
    _ = bi :: Bimap Int Integer
    y = fst . findMaxR $ bi

prop_deleteMin_is_valid bi = not (null bi) ==>
    valid (deleteMin bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteFindMin_is_valid bi = not (null bi) ==>
    valid (snd $ deleteFindMin bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteMinR_is_valid bi = not (null bi) ==>
    valid (deleteMinR bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteFindMinR_is_valid bi = not (null bi) ==>
    valid (snd $ deleteFindMinR bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteMax_is_valid bi = not (null bi) ==>
    valid (deleteMax bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteFindMax_is_valid bi = not (null bi) ==>
    valid (snd $ deleteFindMax bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteMaxR_is_valid bi = not (null bi) ==>
    valid (deleteMaxR bi)
    where
    _ = bi :: Bimap Int Integer

prop_deleteFindMaxR_is_valid bi = not (null bi) ==>
    valid (snd $ deleteFindMaxR bi)
    where
    _ = bi :: Bimap Int Integer

prop_map_preserve_keys bi =
    (Data.List.sort $ P.map f $ keys bi) == (keys $ map f bi)
    where
    f = (4/) -- This is an arbitrary function
    _ = bi :: Bimap Double Integer

prop_map_preserve_lookup bi v =
    (lookup (f v) $ map f bi) == (lookup v bi :: Maybe Integer)
    where
    f = (1-)
    _ = bi :: Bimap Int Integer

prop_map_preserve_right_keys bi =
    (Data.List.sort $ P.map f $ keysR bi) == (keysR $ mapR f bi)
    where
    f = (4/) -- This is an arbitrary function
    _ = bi :: Bimap Int Double

prop_map_preserve_lookupR bi v =
    (lookup v $ mapR f bi) == (f <$> lookup v bi :: Maybe Integer)
    where
    f = (1-)
    _ = bi :: Bimap Int Integer

prop_mapMonotonic_preserve_keys bi =
    (P.map f $ keys bi) == (keys $ mapMonotonic f bi)
    where
    f = (3+) -- This is an arbitrary monotonic function
    _ = bi :: Bimap Double Integer

prop_mapMonotonic_preserve_lookup bi v =
    (lookup (f v) $ mapMonotonic f bi) == (lookup v bi :: Maybe Integer)
    where
    f = (2*)
    _ = bi :: Bimap Int Integer

prop_mapMontonic_preserve_right_keys bi =
    (P.map f $ keysR bi) == (keysR $ mapMonotonicR f bi)
    where
    f = (^2) -- This is an arbitrary monotonic function
    _ = bi :: Bimap Int Double

prop_mapMonotonic_preserve_lookupR bi v =
    (lookup v $ mapMonotonicR f bi) == (f <$> lookup v bi :: Maybe Integer)
    where
    f = (1-)
    _ = bi :: Bimap Int Integer