1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
{-# LANGUAGE BangPatterns, CPP, OverloadedStrings #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
module Aeson
(
aeson
, aesonLazy
, value'
) where
import Data.ByteString.Builder
(Builder, byteString, toLazyByteString, charUtf8, word8)
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative ((*>), (<$>), (<*), pure)
import Data.Monoid (mappend, mempty)
#endif
import Control.Applicative (liftA2)
import Control.DeepSeq (NFData(..))
import Control.Monad (forM)
import Data.Attoparsec.ByteString.Char8 (Parser, char, endOfInput, scientific,
skipSpace, string)
import Data.Bits ((.|.), shiftL)
import Data.ByteString (ByteString)
import Data.Char (chr)
import Data.List (sort)
import Data.Scientific (Scientific)
import Data.Text (Text)
import Data.Text.Encoding (decodeUtf8')
import Data.Vector as Vector (Vector, foldl', fromList)
import Data.Word (Word8)
import System.Directory (getDirectoryContents, doesDirectoryExist)
import System.FilePath ((</>), dropExtension)
import qualified Data.Attoparsec.ByteString as A
import qualified Data.Attoparsec.Lazy as L
import qualified Data.Attoparsec.Zepto as Z
import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Unsafe as B
import qualified Data.HashMap.Strict as H
import Criterion.Main
import Common (pathTo)
#define BACKSLASH 92
#define CLOSE_CURLY 125
#define CLOSE_SQUARE 93
#define COMMA 44
#define DOUBLE_QUOTE 34
#define OPEN_CURLY 123
#define OPEN_SQUARE 91
#define C_0 48
#define C_9 57
#define C_A 65
#define C_F 70
#define C_a 97
#define C_f 102
#define C_n 110
#define C_t 116
data Result a = Error String
| Success a
deriving (Eq, Show)
-- | A JSON \"object\" (key\/value map).
type Object = H.HashMap Text Value
-- | A JSON \"array\" (sequence).
type Array = Vector Value
-- | A JSON value represented as a Haskell value.
data Value = Object !Object
| Array !Array
| String !Text
| Number !Scientific
| Bool !Bool
| Null
deriving (Eq, Show)
instance NFData Value where
rnf (Object o) = rnf o
rnf (Array a) = Vector.foldl' (\x y -> rnf y `seq` x) () a
rnf (String s) = rnf s
rnf (Number n) = rnf n
rnf (Bool b) = rnf b
rnf Null = ()
-- | Parse a top-level JSON value. This must be either an object or
-- an array, per RFC 4627.
--
-- The conversion of a parsed value to a Haskell value is deferred
-- until the Haskell value is needed. This may improve performance if
-- only a subset of the results of conversions are needed, but at a
-- cost in thunk allocation.
json :: Parser Value
json = json_ object_ array_
-- | Parse a top-level JSON value. This must be either an object or
-- an array, per RFC 4627.
--
-- This is a strict version of 'json' which avoids building up thunks
-- during parsing; it performs all conversions immediately. Prefer
-- this version if most of the JSON data needs to be accessed.
json' :: Parser Value
json' = json_ object_' array_'
json_ :: Parser Value -> Parser Value -> Parser Value
json_ obj ary = do
w <- skipSpace *> A.satisfy (\w -> w == OPEN_CURLY || w == OPEN_SQUARE)
if w == OPEN_CURLY
then obj
else ary
{-# INLINE json_ #-}
object_ :: Parser Value
object_ = {-# SCC "object_" #-} Object <$> objectValues jstring value
object_' :: Parser Value
object_' = {-# SCC "object_'" #-} do
!vals <- objectValues jstring' value'
return (Object vals)
where
jstring' = do
!s <- jstring
return s
objectValues :: Parser Text -> Parser Value -> Parser (H.HashMap Text Value)
objectValues str val = do
skipSpace
let pair = liftA2 (,) (str <* skipSpace) (char ':' *> skipSpace *> val)
H.fromList <$> commaSeparated pair CLOSE_CURLY
{-# INLINE objectValues #-}
array_ :: Parser Value
array_ = {-# SCC "array_" #-} Array <$> arrayValues value
array_' :: Parser Value
array_' = {-# SCC "array_'" #-} do
!vals <- arrayValues value'
return (Array vals)
commaSeparated :: Parser a -> Word8 -> Parser [a]
commaSeparated item endByte = do
w <- A.peekWord8'
if w == endByte
then A.anyWord8 >> return []
else loop
where
loop = do
v <- item <* skipSpace
ch <- A.satisfy $ \w -> w == COMMA || w == endByte
if ch == COMMA
then skipSpace >> (v:) <$> loop
else return [v]
{-# INLINE commaSeparated #-}
arrayValues :: Parser Value -> Parser (Vector Value)
arrayValues val = do
skipSpace
Vector.fromList <$> commaSeparated val CLOSE_SQUARE
{-# INLINE arrayValues #-}
-- | Parse any JSON value. You should usually 'json' in preference to
-- this function, as this function relaxes the object-or-array
-- requirement of RFC 4627.
--
-- In particular, be careful in using this function if you think your
-- code might interoperate with Javascript. A naïve Javascript
-- library that parses JSON data using @eval@ is vulnerable to attack
-- unless the encoded data represents an object or an array. JSON
-- implementations in other languages conform to that same restriction
-- to preserve interoperability and security.
value :: Parser Value
value = do
w <- A.peekWord8'
case w of
DOUBLE_QUOTE -> A.anyWord8 *> (String <$> jstring_)
OPEN_CURLY -> A.anyWord8 *> object_
OPEN_SQUARE -> A.anyWord8 *> array_
C_f -> string "false" *> pure (Bool False)
C_t -> string "true" *> pure (Bool True)
C_n -> string "null" *> pure Null
_ | w >= 48 && w <= 57 || w == 45
-> Number <$> scientific
| otherwise -> fail "not a valid json value"
-- | Strict version of 'value'. See also 'json''.
value' :: Parser Value
value' = do
w <- A.peekWord8'
case w of
DOUBLE_QUOTE -> do
!s <- A.anyWord8 *> jstring_
return (String s)
OPEN_CURLY -> A.anyWord8 *> object_'
OPEN_SQUARE -> A.anyWord8 *> array_'
C_f -> string "false" *> pure (Bool False)
C_t -> string "true" *> pure (Bool True)
C_n -> string "null" *> pure Null
_ | w >= 48 && w <= 57 || w == 45
-> do
!n <- scientific
return (Number n)
| otherwise -> fail "not a valid json value"
-- | Parse a quoted JSON string.
jstring :: Parser Text
jstring = A.word8 DOUBLE_QUOTE *> jstring_
-- | Parse a string without a leading quote.
jstring_ :: Parser Text
jstring_ = {-# SCC "jstring_" #-} do
s <- A.scan False $ \s c -> if s then Just False
else if c == DOUBLE_QUOTE
then Nothing
else Just (c == BACKSLASH)
_ <- A.word8 DOUBLE_QUOTE
s1 <- if BACKSLASH `B.elem` s
then case Z.parse unescape s of
Right r -> return r
Left err -> fail err
else return s
case decodeUtf8' s1 of
Right r -> return r
Left err -> fail $ show err
{-# INLINE jstring_ #-}
unescape :: Z.Parser ByteString
unescape = toByteString <$> go mempty where
go acc = do
h <- Z.takeWhile (/=BACKSLASH)
let rest = do
start <- Z.take 2
let !slash = B.unsafeHead start
!t = B.unsafeIndex start 1
escape = case B.findIndex (==t) "\"\\/ntbrfu" of
Just i -> i
_ -> 255
if slash /= BACKSLASH || escape == 255
then fail "invalid JSON escape sequence"
else do
let cont m = go (acc `mappend` byteString h `mappend` m)
{-# INLINE cont #-}
if t /= 117 -- 'u'
then cont (word8 (B.unsafeIndex mapping escape))
else do
a <- hexQuad
if a < 0xd800 || a > 0xdfff
then cont (charUtf8 (chr a))
else do
b <- Z.string "\\u" *> hexQuad
if a <= 0xdbff && b >= 0xdc00 && b <= 0xdfff
then let !c = ((a - 0xd800) `shiftL` 10) +
(b - 0xdc00) + 0x10000
in cont (charUtf8 (chr c))
else fail "invalid UTF-16 surrogates"
done <- Z.atEnd
if done
then return (acc `mappend` byteString h)
else rest
mapping = "\"\\/\n\t\b\r\f"
hexQuad :: Z.Parser Int
hexQuad = do
s <- Z.take 4
let hex n | w >= C_0 && w <= C_9 = w - C_0
| w >= C_a && w <= C_f = w - 87
| w >= C_A && w <= C_F = w - 55
| otherwise = 255
where w = fromIntegral $ B.unsafeIndex s n
a = hex 0; b = hex 1; c = hex 2; d = hex 3
if (a .|. b .|. c .|. d) /= 255
then return $! d .|. (c `shiftL` 4) .|. (b `shiftL` 8) .|. (a `shiftL` 12)
else fail "invalid hex escape"
decodeWith :: Parser Value -> (Value -> Result a) -> L.ByteString -> Maybe a
decodeWith p to s =
case L.parse p s of
L.Done _ v -> case to v of
Success a -> Just a
_ -> Nothing
_ -> Nothing
{-# INLINE decodeWith #-}
decodeStrictWith :: Parser Value -> (Value -> Result a) -> B.ByteString
-> Maybe a
decodeStrictWith p to s =
case either Error to (A.parseOnly p s) of
Success a -> Just a
Error _ -> Nothing
{-# INLINE decodeStrictWith #-}
eitherDecodeWith :: Parser Value -> (Value -> Result a) -> L.ByteString
-> Either String a
eitherDecodeWith p to s =
case L.parse p s of
L.Done _ v -> case to v of
Success a -> Right a
Error msg -> Left msg
L.Fail _ _ msg -> Left msg
{-# INLINE eitherDecodeWith #-}
eitherDecodeStrictWith :: Parser Value -> (Value -> Result a) -> B.ByteString
-> Either String a
eitherDecodeStrictWith p to s =
case either Error to (A.parseOnly p s) of
Success a -> Right a
Error msg -> Left msg
{-# INLINE eitherDecodeStrictWith #-}
-- $lazy
--
-- The 'json' and 'value' parsers decouple identification from
-- conversion. Identification occurs immediately (so that an invalid
-- JSON document can be rejected as early as possible), but conversion
-- to a Haskell value is deferred until that value is needed.
--
-- This decoupling can be time-efficient if only a smallish subset of
-- elements in a JSON value need to be inspected, since the cost of
-- conversion is zero for uninspected elements. The trade off is an
-- increase in memory usage, due to allocation of thunks for values
-- that have not yet been converted.
-- $strict
--
-- The 'json'' and 'value'' parsers combine identification with
-- conversion. They consume more CPU cycles up front, but have a
-- smaller memory footprint.
-- | Parse a top-level JSON value followed by optional whitespace and
-- end-of-input. See also: 'json'.
jsonEOF :: Parser Value
jsonEOF = json <* skipSpace <* endOfInput
-- | Parse a top-level JSON value followed by optional whitespace and
-- end-of-input. See also: 'json''.
jsonEOF' :: Parser Value
jsonEOF' = json' <* skipSpace <* endOfInput
toByteString :: Builder -> ByteString
toByteString = L.toStrict . toLazyByteString
{-# INLINE toByteString #-}
aeson :: IO [Benchmark]
aeson = do
path <- pathTo "json-data"
names <- sort . filter (`notElem` [".", ".."]) <$> getDirectoryContents path
forM names $ \name -> do
bs <- B.readFile (path </> name)
return . bench ("attoparsec/" ++ dropExtension name) $ nf (A.parseOnly jsonEOF') bs
aesonLazy :: IO [Benchmark]
aesonLazy = do
path <- pathTo "json-data"
names <- sort . filter (`notElem` [".", ".."]) <$> getDirectoryContents path
forM names $ \name -> do
bs <- L.readFile (path </> name)
return . bench ("attoparsec/lazy-bytestring/" ++ dropExtension name) $ nf (L.parse jsonEOF') bs
|