1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
|
{-# OPTIONS -cpp -fglasgow-exts #-}
--
-- (c) The University of Glasgow 2002
--
-- Binary I/O library, with special tweaks for GHC
--
-- Based on the nhc98 Binary library, which is copyright
-- (c) Malcolm Wallace and Colin Runciman, University of York, 1998.
-- Under the terms of the license for that software, we must tell you
-- where you can obtain the original version of the Binary library, namely
-- http://www.cs.york.ac.uk/fp/nhc98/
module NewBinary
( {-type-} Bin,
{-class-} Binary(..),
{-type-} BinHandle(..),
openBinIO,
openBinIO_,
openBinMem,
-- closeBin,
-- getUserData,
seekBin,
tellBin,
tellBinByte,
castBin,
writeBinMem,
readBinMem,
isEOFBin,
-- for writing instances:
putByte,
getByte,
-- bit stuff
putBits,
getBits,
flushByte,
finishByte,
putMaybeInt,
getMaybeInt,
-- lazy Bin I/O
lazyGet,
lazyPut,
-- GHC only:
ByteArray(..),
getByteArray,
putByteArray,
-- getBinFileWithDict, -- :: Binary a => FilePath -> IO a
-- putBinFileWithDict, -- :: Binary a => FilePath -> Module -> a -> IO ()
) where
#include "MachDeps.h"
import GHC.Exts
import GHC.IOBase
import GHC.Real
import Data.Array.IO ( IOUArray )
import Data.Bits
import Data.Int
import Data.Word
import Data.Char
import Control.Monad
import Control.Exception
import Data.Array
import Data.Array.IO
import Data.Array.Base
import System.IO as IO
import System.IO.Error ( mkIOError, eofErrorType )
import GHC.Handle
import System.IO
import GHC.Exts
#if __GLASGOW_HASKELL__ >= 504
import GHC.IOBase
import Data.Word
import Data.Bits
#else
import PrelIOBase
import Word
import Bits
#endif
#ifndef SIZEOF_HSINT
#define SIZEOF_HSINT INT_SIZE_IN_BYTES
#endif
#if __GLASGOW_HASKELL__ < 503
type BinArray = MutableByteArray RealWorld Int
newArray_ bounds = stToIO (newCharArray bounds)
unsafeWrite arr ix e = stToIO (writeWord8Array arr ix e)
unsafeRead arr ix = stToIO (readWord8Array arr ix)
hPutArray h arr sz = hPutBufBA h arr sz
hGetArray h sz = hGetBufBA h sz
mkIOError :: IOErrorType -> String -> Maybe Handle -> Maybe FilePath -> Exception
mkIOError t location maybe_hdl maybe_filename
= IOException (IOError maybe_hdl t location ""
maybe_filename
)
eofErrorType = EOF
#ifndef SIZEOF_HSINT
#define SIZEOF_HSINT INT_SIZE_IN_BYTES
#endif
#ifndef SIZEOF_HSWORD
#define SIZEOF_HSWORD WORD_SIZE_IN_BYTES
#endif
#else
type BinArray = IOUArray Int Word8
#endif
data BinHandle
= BinMem { -- binary data stored in an unboxed array
off_r :: !FastMutInt, -- the current offset
sz_r :: !FastMutInt, -- size of the array (cached)
arr_r :: !(IORef BinArray), -- the array (bounds: (0,size-1))
bit_off_r :: !FastMutInt, -- the bit offset (see end of file)
bit_cache_r :: !FastMutInt -- the bit cache (see end of file)
}
-- XXX: should really store a "high water mark" for dumping out
-- the binary data to a file.
| BinIO { -- binary data stored in a file
off_r :: !FastMutInt, -- the current offset (cached)
hdl :: !IO.Handle, -- the file handle (must be seekable)
bit_off_r :: !FastMutInt, -- the bit offset (see end of file)
bit_cache_r :: !FastMutInt -- the bit cache (see end of file)
}
-- cache the file ptr in BinIO; using hTell is too expensive
-- to call repeatedly. If anyone else is modifying this Handle
-- at the same time, we'll be screwed.
data Bin a = BinPtr !Int !Int -- byte/bit
deriving (Eq, Ord, Show, Bounded)
castBin :: Bin a -> Bin b
castBin (BinPtr i j) = BinPtr i j
class Binary a where
put_ :: BinHandle -> a -> IO ()
put :: BinHandle -> a -> IO (Bin a)
get :: BinHandle -> IO a
-- define one of put_, put. Use of put_ is recommended because it
-- is more likely that tail-calls can kick in, and we rarely need the
-- position return value.
put_ bh a = do put bh a; return ()
put bh a = do p <- tellBin bh; put_ bh a; return p
putAt :: Binary a => BinHandle -> Bin a -> a -> IO ()
putAt bh p x = do seekBin bh p; put bh x; return ()
getAt :: Binary a => BinHandle -> Bin a -> IO a
getAt bh p = do seekBin bh p; get bh
openBinIO_ :: IO.Handle -> IO BinHandle
openBinIO_ h = openBinIO h noBinHandleUserData
newZeroInt = do r <- newFastMutInt; writeFastMutInt r 0; return r
-- openBinIO :: IO.Handle -> Module -> IO BinHandle
openBinIO :: forall t. Handle -> t -> IO BinHandle
openBinIO h mod = do
r <- newZeroInt
o <- newZeroInt
c <- newZeroInt
-- state <- newWriteState mod
return (BinIO r h o c)
--openBinMem :: Int -> Module -> IO BinHandle
openBinMem :: forall t. Int -> t -> IO BinHandle
openBinMem size mod
| size <= 0 = error "Data.Binary.openBinMem: size must be > 0" -- fix, was ">= 0"
| otherwise = do
arr <- newArray_ (0,size-1)
arr_r <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r <- newFastMutInt
writeFastMutInt sz_r size
o <- newZeroInt
c <- newZeroInt
-- state <- newWriteState mod
return (BinMem ix_r sz_r arr_r o c)
noBinHandleUserData = error "Binary.BinHandle: no user data"
--getUserData :: BinHandle -> BinHandleState
--getUserData bh = state bh
tellBin :: BinHandle -> IO (Bin a)
tellBin (BinIO r _ o _) = do ix <- readFastMutInt r; bix <- readFastMutInt o; return (BinPtr ix bix)
tellBin (BinMem r _ _ o _) = do ix <- readFastMutInt r; bix <- readFastMutInt o; return (BinPtr ix bix)
tellBinByte (BinIO r _ _ _) = do ix <- readFastMutInt r; return ix
tellBinByte (BinMem r _ _ _ _) = do ix <- readFastMutInt r; return ix
seekBin :: BinHandle -> Bin a -> IO ()
seekBin bh@(BinIO ix_r h o c) (BinPtr p bit) = do
writeFastMutInt ix_r p
writeFastMutInt o 0
writeFastMutInt c 0
hSeek h AbsoluteSeek (fromIntegral p)
when (bit /= 0) $ getBits bh bit >> return ()
return ()
seekBin h@(BinMem ix_r sz_r a o c) (BinPtr p bit) = do
sz <- readFastMutInt sz_r
if (p >= sz)
then do expandBin h p
writeFastMutInt ix_r p
writeFastMutInt o 0
writeFastMutInt c 0
when (bit /= 0) $ getBits h bit >> return ()
return ()
else do writeFastMutInt ix_r p
writeFastMutInt o 0
writeFastMutInt c 0
when (bit /= 0) $ getBits h bit >> return ()
return ()
isEOFBin :: BinHandle -> IO Bool
isEOFBin (BinMem ix_r sz_r a _ _) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
return (ix >= sz)
isEOFBin (BinIO ix_r h _ _) = hIsEOF h
writeBinMem :: BinHandle -> FilePath -> IO ()
writeBinMem (BinIO _ _ _ _) _ = error "Data.Binary.writeBinMem: not a memory handle"
writeBinMem bh@(BinMem ix_r sz_r arr_r bit_off_r bit_cache_r) fn = do
flushByte bh
h <- openBinaryFile fn WriteMode
arr <- readIORef arr_r
ix <- readFastMutInt ix_r
hPutArray h arr ix
hClose h
flushByte :: BinHandle -> IO ()
flushByte bh = do
bit_off <- readFastMutInt (bit_off_r bh)
if bit_off == 0
then return ()
else putBits bh (8 - bit_off) 0
finishByte :: BinHandle -> IO ()
finishByte bh = do
bit_off <- readFastMutInt (bit_off_r bh)
if bit_off == 0
then return ()
else getBits bh (8 - bit_off) >> return ()
readBinMem :: FilePath -> IO BinHandle
readBinMem filename = do
h <- openBinaryFile filename ReadMode
filesize' <- hFileSize h
let filesize = fromIntegral filesize'
arr <- newArray_ (0,filesize-1)
count <- hGetArray h arr filesize
when (count /= filesize)
(error ("Binary.readBinMem: only read " ++ show count ++ " bytes"))
hClose h
arr_r <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r <- newFastMutInt
writeFastMutInt sz_r filesize
bit_off_r <- newZeroInt
bit_cache_r <- newZeroInt
return (BinMem {-initReadState-} ix_r sz_r arr_r bit_off_r bit_cache_r)
-- expand the size of the array to include a specified offset
expandBin :: BinHandle -> Int -> IO ()
expandBin (BinMem ix_r sz_r arr_r _ _) off = do
sz <- readFastMutInt sz_r
let sz' = head (dropWhile (<= off) (iterate (* 2) sz))
arr <- readIORef arr_r
arr' <- newArray_ (0,sz'-1)
sequence_ [ unsafeRead arr i >>= unsafeWrite arr' i
| i <- [ 0 .. sz-1 ] ]
writeFastMutInt sz_r sz'
writeIORef arr_r arr'
-- hPutStrLn stderr ("expanding to size: " ++ show sz')
return ()
expandBin (BinIO _ _ _ _) _ = return ()
-- no need to expand a file, we'll assume they expand by themselves.
-- -----------------------------------------------------------------------------
-- Low-level reading/writing of bytes
putWord8 :: BinHandle -> Word8 -> IO ()
putWord8 h@(BinMem ix_r sz_r arr_r bit_off_r bit_cache_r) w = do
bit_off <- readFastMutInt bit_off_r
if bit_off /= 0 then putBits h 8 w else do -- only do standard putWord8 if bit_off == 0
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
-- double the size of the array if it overflows
if (ix >= sz)
then do expandBin h ix
putWord8 h w
else do arr <- readIORef arr_r
unsafeWrite arr ix w
writeFastMutInt ix_r (ix+1)
return ()
putWord8 bh@(BinIO ix_r h bit_off_r bit_cache_r) w = do
bit_off <- readFastMutInt bit_off_r
if bit_off /= 0 then putBits bh 8 w else do
ix <- readFastMutInt ix_r
hPutChar h (chr (fromIntegral w)) -- XXX not really correct
writeFastMutInt ix_r (ix+1)
return ()
putByteNoBits :: BinHandle -> Word8 -> IO ()
putByteNoBits h@(BinMem ix_r sz_r arr_r _ _) w = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
-- double the size of the array if it overflows
if (ix >= sz)
then do expandBin h ix
putByteNoBits h w
else do arr <- readIORef arr_r
unsafeWrite arr ix w
writeFastMutInt ix_r (ix+1)
return ()
putByteNoBits bh@(BinIO ix_r h _ _) w = do
hPutChar h (chr (fromIntegral w)) -- XXX not really correct
incFastMutInt ix_r
return ()
getByteNoBits :: BinHandle -> IO Word8
getByteNoBits h@(BinMem ix_r sz_r arr_r _ _) = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix >= sz) $
throw (IOException $ mkIOError eofErrorType "Data.Binary.getWord8" Nothing Nothing)
arr <- readIORef arr_r
w <- unsafeRead arr ix
writeFastMutInt ix_r (ix+1)
return w
getByteNoBits bh@(BinIO ix_r h _ _) = do
c <- hGetChar h
incFastMutInt ix_r
return $! (fromIntegral (ord c)) -- XXX not really correct
getWord8 :: BinHandle -> IO Word8
getWord8 h@(BinMem ix_r sz_r arr_r bit_off_r _) = do
bit_off <- readFastMutInt bit_off_r
if bit_off /= 0 then getBits h 8 else do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix >= sz) $
throw (IOException $ mkIOError eofErrorType "Data.Binary.getWord8" Nothing Nothing)
arr <- readIORef arr_r
w <- unsafeRead arr ix
writeFastMutInt ix_r (ix+1)
return w
getWord8 bh@(BinIO ix_r h bit_off_r _) = do
bit_off <- readFastMutInt bit_off_r
if bit_off /= 0 then getBits bh 8 else do
ix <- readFastMutInt ix_r
c <- hGetChar h
writeFastMutInt ix_r (ix+1)
return $! (fromIntegral (ord c)) -- XXX not really correct
putByte :: BinHandle -> Word8 -> IO ()
putByte bh w = put_ bh w
getByte :: BinHandle -> IO Word8
getByte = getWord8
-- -----------------------------------------------------------------------------
-- Bit functions
putBits :: BinHandle -> Int -> Word8 -> IO ()
putBits bh num_bits bits {- | num_bits == 0 = return ()
| num_bits < 0 = error "putBits cannot write negative numbers of bits"
| num_bits > 8 = error "putBits cannot write more than 8 bits at a time"
| otherwise -} = do
bit_off <- readFastMutInt (bit_off_r bh)
if num_bits + bit_off < 8
then do incFastMutIntBy (bit_off_r bh) num_bits
orFastMutInt (bit_cache_r bh) (bits `shiftL` bit_off)
else if num_bits + bit_off == 8
then do writeFastMutInt (bit_off_r bh) 0
bit_cache <- {-# SCC "bc1" #-} readFastMutInt (bit_cache_r bh) >>= return . fromIntegral
writeFastMutInt (bit_cache_r bh) 0
--putByte bh (bit_cache .|. (bits `shiftL` bit_off)) -- won't call putBits because bit_off_r == 0
putByteNoBits bh (bit_cache .|. (bits `shiftL` bit_off))
else do let leftover_bits = 8 - bit_off -- we are going over a byte boundary
bit_cache <- {-# SCC "bc2" #-} readFastMutInt (bit_cache_r bh) >>= \x -> return ({-# SCC "fi" #-} fromIntegral x)
writeFastMutInt (bit_off_r bh) 0
writeFastMutInt (bit_cache_r bh) 0
{- putByte bh (bit_cache .|. (bits `shiftL` bit_off)) -} -- won't call putBits
putByteNoBits bh (bit_cache .|. (bits `shiftL` bit_off))
putBits bh (num_bits - leftover_bits) (bits `shiftR` leftover_bits)
getBits :: BinHandle -> Int -> IO Word8
getBits bh num_bits {- | num_bits == 0 = return 0
| num_bits < 0 = error "getBits cannot read negative numbers of bits"
| num_bits > 8 = error "getBits cannot read more than 8 bits at a time"
| otherwise -} = do
bit_off <- readFastMutInt (bit_off_r bh)
if bit_off == 0
then do bit_cache <- getByte bh
if num_bits == 8
then do writeFastMutInt (bit_off_r bh) 0
writeFastMutInt (bit_cache_r bh) 0
return bit_cache
else do writeFastMutInt (bit_off_r bh) (fromIntegral num_bits)
writeFastMutInt (bit_cache_r bh) (fromIntegral bit_cache)
return (bit_cache .&. bit_mask num_bits)
else if bit_off + num_bits < 8
then do incFastMutIntBy (bit_off_r bh) num_bits
bit_cache <- readFastMutInt (bit_cache_r bh) >>= return . fromIntegral
return ((bit_cache `shiftR` bit_off) .&. bit_mask num_bits)
else if bit_off + num_bits == 8
then do writeFastMutInt (bit_off_r bh) 0
bit_cache <- readFastMutInt (bit_cache_r bh) >>= return . fromIntegral
writeFastMutInt (bit_cache_r bh) 0
return ((bit_cache `shiftR` bit_off) .&. bit_mask num_bits)
else do let leftover_bits = 8 - bit_off
bit_cache <- readFastMutInt (bit_cache_r bh) >>= return . fromIntegral
let bits = (bit_cache `shiftR` bit_off) .&. bit_mask leftover_bits
writeFastMutInt (bit_cache_r bh) 0
writeFastMutInt (bit_off_r bh) 0
{- bit_cache <- getByte bh -}
-- use a version that doesn't care about bits
bit_cache <- getByteNoBits bh
writeFastMutInt (bit_off_r bh) (num_bits - leftover_bits)
writeFastMutInt (bit_cache_r bh) (fromIntegral bit_cache)
return (bits .|. ((bit_cache .&. bit_mask (num_bits - leftover_bits)) `shiftL` leftover_bits))
bit_mask n = (complement 0) `shiftR` (8 - n)
-- -----------------------------------------------------------------------------
-- Primitve Word writes
instance Binary Word8 where
put_ = putWord8
get = getWord8
instance Binary Word16 where
put_ h w = do -- XXX too slow.. inline putWord8?
putByte h (fromIntegral (w `shiftR` 8))
putByte h (fromIntegral (w .&. 0xff))
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 8) .|. fromIntegral w2)
instance Binary Word32 where
put_ h w = do
putByte h (fromIntegral (w `shiftR` 24))
putByte h (fromIntegral ((w `shiftR` 16) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 8) .&. 0xff))
putByte h (fromIntegral (w .&. 0xff))
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 24) .|.
(fromIntegral w2 `shiftL` 16) .|.
(fromIntegral w3 `shiftL` 8) .|.
(fromIntegral w4))
instance Binary Word64 where
put_ h w = do
putByte h (fromIntegral (w `shiftR` 56))
putByte h (fromIntegral ((w `shiftR` 48) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 40) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 32) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 24) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 16) .&. 0xff))
putByte h (fromIntegral ((w `shiftR` 8) .&. 0xff))
putByte h (fromIntegral (w .&. 0xff))
get h = do
w1 <- getWord8 h
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
w5 <- getWord8 h
w6 <- getWord8 h
w7 <- getWord8 h
w8 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 56) .|.
(fromIntegral w2 `shiftL` 48) .|.
(fromIntegral w3 `shiftL` 40) .|.
(fromIntegral w4 `shiftL` 32) .|.
(fromIntegral w5 `shiftL` 24) .|.
(fromIntegral w6 `shiftL` 16) .|.
(fromIntegral w7 `shiftL` 8) .|.
(fromIntegral w8))
-- -----------------------------------------------------------------------------
-- Primitve Int writes
instance Binary Int8 where
put_ h w = put_ h (fromIntegral w :: Word8)
get h = do w <- get h; return $! (fromIntegral (w::Word8))
instance Binary Int16 where
put_ h w = put_ h (fromIntegral w :: Word16)
get h = do w <- get h; return $! (fromIntegral (w::Word16))
instance Binary Int32 where
put_ h w = put_ h (fromIntegral w :: Word32)
get h = do w <- get h; return $! (fromIntegral (w::Word32))
put31ofInt32 :: BinHandle -> Int32 -> IO ()
put31ofInt32 h i = do
putBits h 7 (fromIntegral (w `shiftR` 24))
putBits h 8 (fromIntegral ((w `shiftR` 16) .&. 0xff))
putBits h 8 (fromIntegral ((w `shiftR` 8) .&. 0xff))
putBits h 8 (fromIntegral (w .&. 0xff))
where w = fromIntegral i :: Word32
get31ofInt32 :: BinHandle -> IO Int32
get31ofInt32 h = do
w1 <- getBits h 7
w2 <- getWord8 h
w3 <- getWord8 h
w4 <- getWord8 h
return $! ((fromIntegral w1 `shiftL` 24) .|.
(fromIntegral w2 `shiftL` 16) .|.
(fromIntegral w3 `shiftL` 8) .|.
(fromIntegral w4))
instance Binary Int64 where
put_ h w = put_ h (fromIntegral w :: Word64)
get h = do w <- get h; return $! (fromIntegral (w::Word64))
-- -----------------------------------------------------------------------------
-- Instances for standard types
instance Binary () where
put_ bh () = return ()
get _ = return ()
-- getF bh p = case getBitsF bh 0 p of (_,b) -> ((),b)
{- updated for bits
instance Binary Bool where
put_ bh b = putByte bh (fromIntegral (fromEnum b))
get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x))
-- getF bh p = case getBitsF bh 1 p of (x,b) -> (toEnum x,b)
-}
instance Binary Bool where
put_ bh True = putBits bh 1 1
put_ bh False = putBits bh 1 0
get bh = do b <- getBits bh 1; return (b == 1)
instance Binary Char where
put_ bh c = put_ bh (fromIntegral (ord c) :: Word32)
get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32)))
-- getF bh p = case getBitsF bh 8 p of (x,b) -> (toEnum x,b)
instance Binary Int where
#if SIZEOF_HSINT == 4
put_ bh i = put_ bh (fromIntegral i :: Int32)
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int32))
#elif SIZEOF_HSINT == 8
put_ bh i = put_ bh (fromIntegral i :: Int64)
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int64))
#else
#error "unsupported sizeof(HsInt)"
#endif
-- getF bh = getBitsF bh 32
{-
instance Binary a => Binary [a] where
put_ bh [] = putByte bh 0
put_ bh (x:xs) = do putByte bh 1; put_ bh x; put_ bh xs
get bh = do h <- getWord8 bh
case h of
0 -> return []
_ -> do x <- get bh
xs <- get bh
return (x:xs)
-}
instance Binary a => Binary [a] where
put_ bh l = do
put_ bh (length l)
mapM (put_ bh) l
return ()
get bh = do
len <- get bh
mapM (\_ -> get bh) [1..(len::Int)]
instance (Binary a, Binary b) => Binary (a,b) where
put_ bh (a,b) = do put_ bh a; put_ bh b
get bh = do a <- get bh
b <- get bh
return (a,b)
instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where
put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c
get bh = do a <- get bh
b <- get bh
c <- get bh
return (a,b,c)
instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where
put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
return (a,b,c,d)
instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d,e) where
put_ bh (a,b,c,d,e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
return (a,b,c,d,e)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d,e,f) where
put_ bh (a,b,c,d,e,f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
return (a,b,c,d,e,f)
instance Binary a => Binary (Maybe a) where
put_ bh Nothing = putByte bh 0
put_ bh (Just a) = do putByte bh 1; put_ bh a
get bh = do h <- getWord8 bh
case h of
0 -> return Nothing
_ -> do x <- get bh; return (Just x)
putMaybeInt :: BinHandle -> Maybe Int -> IO ()
getMaybeInt :: BinHandle -> IO (Maybe Int)
putMaybeInt bh Nothing = putBits bh 1 0
putMaybeInt bh (Just i) = do putBits bh 1 1; put31ofInt32 bh (fromIntegral i)
getMaybeInt bh = do
b <- getBits bh 1
case b of
0 -> return Nothing
_ -> do i <- get31ofInt32 bh
return (Just (fromIntegral i))
{- RULES get = getMaybeInt -}
{- SPECIALIZE put_ :: BinHandle -> Maybe Int -> IO () = putMaybeInt -}
{- SPECIALIZE get :: BinHandle -> IO (Maybe Int) = getMaybeInt -}
instance (Binary a, Binary b) => Binary (Either a b) where
put_ bh (Left a) = do putByte bh 0; put_ bh a
put_ bh (Right b) = do putByte bh 1; put_ bh b
get bh = do h <- getWord8 bh
case h of
0 -> do a <- get bh ; return (Left a)
_ -> do b <- get bh ; return (Right b)
instance Binary Integer where
put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#)
put_ bh (J# s# a#) = do
p <- putByte bh 1;
put_ bh (I# s#)
let sz# = sizeofByteArray# a# -- in *bytes*
put_ bh (I# sz#) -- in *bytes*
putByteArray bh a# sz#
get bh = do
b <- getByte bh
case b of
0 -> do (I# i#) <- get bh
return (S# i#)
_ -> do (I# s#) <- get bh
sz <- get bh
(BA a#) <- getByteArray bh sz
return (J# s# a#)
putByteArray :: BinHandle -> ByteArray# -> Int# -> IO ()
putByteArray bh a s# = loop 0#
where loop n#
| n# ==# s# = return ()
| otherwise = do
putByte bh (indexByteArray a n#)
loop (n# +# 1#)
getByteArray :: BinHandle -> Int -> IO ByteArray
getByteArray bh (I# sz) = do
(MBA arr) <- newByteArray sz
let loop n
| n ==# sz = return ()
| otherwise = do
w <- getByte bh
writeByteArray arr n w
loop (n +# 1#)
loop 0#
freezeByteArray arr
data ByteArray = BA ByteArray#
data MBA = MBA (MutableByteArray# RealWorld)
newByteArray :: Int# -> IO MBA
newByteArray sz = IO $ \s ->
case newByteArray# sz s of { (# s, arr #) ->
(# s, MBA arr #) }
freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray
freezeByteArray arr = IO $ \s ->
case unsafeFreezeByteArray# arr s of { (# s, arr #) ->
(# s, BA arr #) }
writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO ()
writeByteArray arr i w8 = IO $ \s ->
case fromIntegral w8 of { W# w# ->
case writeCharArray# arr i (chr# (word2Int# w#)) s of { s ->
(# s , () #) }}
indexByteArray a# n# = fromIntegral (I# (ord# (indexCharArray# a# n#)))
instance (Integral a, Binary a) => Binary (Ratio a) where
put_ bh (a :% b) = do put_ bh a; put_ bh b
get bh = do a <- get bh; b <- get bh; return (a :% b)
instance Binary (Bin a) where
put_ bh (BinPtr i j) = put_ bh (i,j)
get bh = do (i,j) <- get bh; return (BinPtr i j)
-- -----------------------------------------------------------------------------
-- Lazy reading/writing
lazyPut :: Binary a => BinHandle -> a -> IO ()
lazyPut bh a = do
-- output the obj with a ptr to skip over it:
pre_a <- tellBin bh
put_ bh pre_a -- save a slot for the ptr
put_ bh a -- dump the object
q <- tellBin bh -- q = ptr to after object
putAt bh pre_a q -- fill in slot before a with ptr to q
seekBin bh q -- finally carry on writing at q
lazyGet :: Binary a => BinHandle -> IO a
lazyGet bh = do
p <- get bh -- a BinPtr
p_a <- tellBin bh
a <- unsafeInterleaveIO (getAt bh p_a)
seekBin bh p -- skip over the object for now
return a
-- -----------------------------------------------------------------------------
-- BinHandleState
{-
type BinHandleState =
(Module,
IORef Int,
IORef (UniqFM (Int,FastString)),
Array Int FastString)
initReadState :: BinHandleState
initReadState = (undef, undef, undef, undef)
newWriteState :: Module -> IO BinHandleState
newWriteState m = do
j_r <- newIORef 0
out_r <- newIORef emptyUFM
return (m,j_r,out_r,undef)
undef = error "Binary.BinHandleState"
-- -----------------------------------------------------------------------------
-- FastString binary interface
getBinFileWithDict :: Binary a => FilePath -> IO a
getBinFileWithDict file_path = do
bh <- Binary.readBinMem file_path
magic <- get bh
when (magic /= binaryInterfaceMagic) $
throwDyn (ProgramError (
"magic number mismatch: old/corrupt interface file?"))
dict_p <- Binary.get bh -- get the dictionary ptr
data_p <- tellBin bh
seekBin bh dict_p
dict <- getDictionary bh
seekBin bh data_p
let (mod, j_r, out_r, _) = state bh
get bh{ state = (mod,j_r,out_r,dict) }
initBinMemSize = (1024*1024) :: Int
binaryInterfaceMagic = 0x1face :: Word32
putBinFileWithDict :: Binary a => FilePath -> Module -> a -> IO ()
putBinFileWithDict file_path mod a = do
bh <- openBinMem initBinMemSize mod
put_ bh binaryInterfaceMagic
p <- tellBin bh
put_ bh p -- placeholder for ptr to dictionary
put_ bh a
let (_, j_r, fm_r, _) = state bh
j <- readIORef j_r
fm <- readIORef fm_r
dict_p <- tellBin bh
putAt bh p dict_p -- fill in the placeholder
seekBin bh dict_p -- seek back to the end of the file
putDictionary bh j (constructDictionary j fm)
writeBinMem bh file_path
type Dictionary = Array Int FastString
-- should be 0-indexed
putDictionary :: BinHandle -> Int -> Dictionary -> IO ()
putDictionary bh sz dict = do
put_ bh sz
mapM_ (putFS bh) (elems dict)
getDictionary :: BinHandle -> IO Dictionary
getDictionary bh = do
sz <- get bh
elems <- sequence (take sz (repeat (getFS bh)))
return (listArray (0,sz-1) elems)
constructDictionary :: Int -> UniqFM (Int,FastString) -> Dictionary
constructDictionary j fm = array (0,j-1) (eltsUFM fm)
putFS bh (FastString id l ba) = do
put_ bh (I# l)
putByteArray bh ba l
putFS bh s = error ("Binary.put_(FastString): " ++ unpackFS s)
-- Note: the length of the FastString is *not* the same as
-- the size of the ByteArray: the latter is rounded up to a
-- multiple of the word size.
{- -- possible faster version, not quite there yet:
getFS bh@BinMem{} = do
(I# l) <- get bh
arr <- readIORef (arr_r bh)
off <- readFastMutInt (off_r bh)
return $! (mkFastSubStringBA# arr off l)
-}
getFS bh = do
(I# l) <- get bh
(BA ba) <- getByteArray bh (I# l)
return $! (mkFastSubStringBA# ba 0# l)
instance Binary FastString where
put_ bh f@(FastString id l ba) =
case getUserData bh of { (_, j_r, out_r, dict) -> do
out <- readIORef out_r
let uniq = getUnique f
case lookupUFM out uniq of
Just (j,f) -> put_ bh j
Nothing -> do
j <- readIORef j_r
put_ bh j
writeIORef j_r (j+1)
writeIORef out_r (addToUFM out uniq (j,f))
}
put_ bh s = error ("Binary.put_(FastString): " ++ show (unpackFS s))
get bh = do
j <- get bh
case getUserData bh of (_, _, _, arr) -> return (arr ! j)
-}
{----------------------------------------------------------------------
---------- Hal's Notes -----------------------------------------------
----------------------------------------------------------------------
We are adding support for
putBits :: BinHandle -> Int -> Word8 -> IO ()
getBits :: BinHandle -> Int -> IO Word8
flushBits :: BinHandle -> Int -> IO ()
closeHandle :: BinHandle -> IO ()
where
`putBits bh num_bits bits' writes the right-most num_bits of bits to
bh. `getBits bh num_bits` reads num_bits from bh and stores them in
the right-most positions of the result. flushBits bh n alignes the
stream to the next 2^n bit boundary. closeHandle flushes all
remaining bits and closes the handle.
In order to implement this, we need to extend the BinHandles with two
fields: bit_off_r :: Int and bit_cache :: Word8. Based on this, the
basic implementations look something like this:
putBits bh num_bits bits =
if num_bits + bit_off_r <= 8
then bit_off_r += num_bits
add num_bits of bits to the tail of bit_cache
if bit_off_r == 8
then write bit_cache and set bit_cache = 0, bit_off_r = 0
else let leftover_bits = 8 - bit_off_r
add leftover_bits of bits to tail of bit_cache
write bit_cache and set bit_cache = 0, bit_off_r = 0
putBits bh (num_bits - leftover_bits) (bits >> leftover_bits)
(note that this will recurse at most once)
getBits bh num_bits =
if bit_off_r == 0
then bit_cache <- read a byte
bit_off_r = num_bits
if bit_off_r == 8, set bit_off_r = 0, bit_cache = 0
else if bit_off_r + num_bits <= 8
then bit_off_r += num_bits
bits = bits from bit_off_r -> bit_off_r+num_bits of bit_cache
if bit_off_r == 8, set bit_off_r = 0, bit_cache = 0
return bits
else let leftover_bits = 8 - bit_off_r
bits = (last leftover_bits from bit_cache) << (num_bits - leftover_bits)
bit_cache <- read a byte
bit_off_r = num_bits - leftover_bits
return (bits || first (num_bits - leftover_bits) of bit_cache)
Now, we must also modify putByte/getByte. In these, we do a quick
check to see if bit_off_r == 0; if it does, then we just execute
normally. Otherwise, we just call putBits/getBits with num_bits=8.
closeHandle bh =
if bit_off_r == 0
then close the handle
else write bit_cache and set bit_cache = 0, bit_off_r =0
close the handle
-}
------------------------------------------------------------------------
#if __GLASGOW_HASKELL__ < 411
newByteArray# = newCharArray#
#endif
#ifdef __GLASGOW_HASKELL__
data FastMutInt = FastMutInt (MutableByteArray# RealWorld)
newFastMutInt :: IO FastMutInt
newFastMutInt = IO $ \s ->
case newByteArray# size s of { (# s, arr #) ->
(# s, FastMutInt arr #) }
where I# size = SIZEOF_HSINT
readFastMutInt :: FastMutInt -> IO Int
readFastMutInt (FastMutInt arr) = IO $ \s ->
case readIntArray# arr 0# s of { (# s, i #) ->
(# s, I# i #) }
writeFastMutInt :: FastMutInt -> Int -> IO ()
writeFastMutInt (FastMutInt arr) (I# i) = IO $ \s ->
case writeIntArray# arr 0# i s of { s ->
(# s, () #) }
incFastMutInt :: FastMutInt -> IO Int -- Returns original value
incFastMutInt (FastMutInt arr) = IO $ \s ->
case readIntArray# arr 0# s of { (# s, i #) ->
case writeIntArray# arr 0# (i +# 1#) s of { s ->
(# s, I# i #) } }
incFastMutIntBy :: FastMutInt -> Int -> IO Int -- Returns original value
incFastMutIntBy (FastMutInt arr) (I# n) = IO $ \s ->
case readIntArray# arr 0# s of { (# s, i #) ->
case writeIntArray# arr 0# (i +# n) s of { s ->
(# s, I# i #) } }
-- we should optimize this: ask SimonM :)
orFastMutInt :: FastMutInt -> Word8 -> IO ()
orFastMutInt fmi w = do
i <- readFastMutInt fmi
writeFastMutInt fmi (i .|. (fromIntegral w))
#endif
|