File: bitvec_simd.c

package info (click to toggle)
haskell-bitvec 1.1.5.0-4
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 332 kB
  • sloc: haskell: 3,408; ansic: 397; makefile: 5
file content (450 lines) | stat: -rw-r--r-- 14,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#include <inttypes.h>
#include <stddef.h>

#ifdef __x86_64__
#include <immintrin.h>
#endif

#include "HsFFI.h"

HsInt _hs_bitvec_popcount(const uint32_t *src, HsInt len) {
    HsInt count = 0;
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        uint32_t x = src[i];
        // count += popcount(t);
        // https://bits.stephan-brumme.com/countBits.html
        x = x - ((x >> 1) & 0x55555555);
        x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
        x = (x + (x >> 4)) & 0x0f0f0f0f;
        count += (x * 0x01010101) >> 24;
    }
    return count;
}

void _hs_bitvec_com(uint8_t *dest, uint8_t *src, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = ~src[i];
    }
}

void _hs_bitvec_and(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = src1[i] & src2[i];
    }
}

void _hs_bitvec_ior(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = src1[i] | src2[i];
    }
}

void _hs_bitvec_xor(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = src1[i] ^ src2[i];
    }
}

void _hs_bitvec_andn(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = src1[i] & (~src2[i]);
    }
}

void _hs_bitvec_iorn(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = src1[i] | (~src2[i]);
    }
}

void _hs_bitvec_nand(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = ~(src1[i] & src2[i]);
    }
}

void _hs_bitvec_nior(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = ~(src1[i] | src2[i]);
    }
}

void _hs_bitvec_xnor(uint8_t *dest, const uint8_t *src1, const uint8_t *src2, HsInt len) {
    #pragma omp simd
    for (size_t i = 0; i < len; i++) {
        dest[i] = ~(src1[i] ^ src2[i]);
    }
}


#ifdef __x86_64__
static void reverse_bits_sse(uint64_t *dest, const uint64_t *src, HsInt len) {
    __m128i mask1l  = _mm_set1_epi32(0x55555555);
    __m128i mask1r  = _mm_set1_epi32(0xaaaaaaaa);
    __m128i mask2l  = _mm_set1_epi32(0x33333333);
    __m128i mask2r  = _mm_set1_epi32(0xcccccccc);
    __m128i mask4l  = _mm_set1_epi32(0x0f0f0f0f);
    __m128i mask4r  = _mm_set1_epi32(0xf0f0f0f0);
    __m128i mask8l  = _mm_set1_epi32(0x00ff00ff);
    __m128i mask8r  = _mm_set1_epi32(0xff00ff00);
    __m128i mask16l = _mm_set1_epi32(0x0000ffff);
    __m128i mask16r = _mm_set1_epi32(0xffff0000);

    size_t i = 0;
    for (; i < (len & (~0x1)); i += 2) {
        __m128i x = _mm_loadu_si128((const __m128i *) (src + i));

        // reverse each word
        x = _mm_or_si128(_mm_slli_epi32(_mm_and_si128(x, mask1l),   1), _mm_srli_epi32(_mm_and_si128(x, mask1r),   1));
        x = _mm_or_si128(_mm_slli_epi32(_mm_and_si128(x, mask2l),   2), _mm_srli_epi32(_mm_and_si128(x, mask2r),   2));
        x = _mm_or_si128(_mm_slli_epi32(_mm_and_si128(x, mask4l),   4), _mm_srli_epi32(_mm_and_si128(x, mask4r),   4));
        x = _mm_or_si128(_mm_slli_epi32(_mm_and_si128(x, mask8l),   8), _mm_srli_epi32(_mm_and_si128(x, mask8r),   8));
        x = _mm_or_si128(_mm_slli_epi32(_mm_and_si128(x, mask16l), 16), _mm_srli_epi32(_mm_and_si128(x, mask16r), 16));

        // reverse order of words
        x = _mm_shuffle_epi32(x, 0x1b);

        _mm_storeu_si128((__m128i *) (dest + len - 2 - i), x);
    }
    for (; i < len; i++) {
        uint64_t x = src[i];
        x = ((x & 0x5555555555555555) <<  1) | ((x & 0xaaaaaaaaaaaaaaaa) >>  1);
        x = ((x & 0x3333333333333333) <<  2) | ((x & 0xcccccccccccccccc) >>  2);
        x = ((x & 0x0f0f0f0f0f0f0f0f) <<  4) | ((x & 0xf0f0f0f0f0f0f0f0) >>  4);
        x = ((x & 0x00ff00ff00ff00ff) <<  8) | ((x & 0xff00ff00ff00ff00) >>  8);
        x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16);
        x = ((x & 0x00000000ffffffff) << 32) | ((x & 0xffffffff00000000) >> 32);
        dest[len - 1 - i] = x;
    }
}

__attribute__((target("avx2")))
static void reverse_bits_avx(uint64_t *dest, const uint64_t *src, HsInt len) {
    __m256i mask1l  = _mm256_set1_epi32(0x55555555);
    __m256i mask1r  = _mm256_set1_epi32(0xaaaaaaaa);
    __m256i mask2l  = _mm256_set1_epi32(0x33333333);
    __m256i mask2r  = _mm256_set1_epi32(0xcccccccc);
    __m256i mask4l  = _mm256_set1_epi32(0x0f0f0f0f);
    __m256i mask4r  = _mm256_set1_epi32(0xf0f0f0f0);
    __m256i mask8l  = _mm256_set1_epi32(0x00ff00ff);
    __m256i mask8r  = _mm256_set1_epi32(0xff00ff00);
    __m256i mask16l = _mm256_set1_epi32(0x0000ffff);
    __m256i mask16r = _mm256_set1_epi32(0xffff0000);

    size_t i = 0;
    for (; i < (len & (~0x3)); i += 4) {
        __m256i x = _mm256_loadu_si256((const __m256i *) (src + i));

        // reverse each word
        x = _mm256_or_si256(_mm256_slli_epi32(_mm256_and_si256(x, mask1l),   1), _mm256_srli_epi32(_mm256_and_si256(x, mask1r),   1));
        x = _mm256_or_si256(_mm256_slli_epi32(_mm256_and_si256(x, mask2l),   2), _mm256_srli_epi32(_mm256_and_si256(x, mask2r),   2));
        x = _mm256_or_si256(_mm256_slli_epi32(_mm256_and_si256(x, mask4l),   4), _mm256_srli_epi32(_mm256_and_si256(x, mask4r),   4));
        x = _mm256_or_si256(_mm256_slli_epi32(_mm256_and_si256(x, mask8l),   8), _mm256_srli_epi32(_mm256_and_si256(x, mask8r),   8));
        x = _mm256_or_si256(_mm256_slli_epi32(_mm256_and_si256(x, mask16l), 16), _mm256_srli_epi32(_mm256_and_si256(x, mask16r), 16));

        // reverse order of words
        x = _mm256_permutevar8x32_epi32(x, _mm256_setr_epi32(7, 6, 5, 4, 3, 2, 1, 0));

        _mm256_storeu_si256((__m256i *) (dest + len - 4 - i), x);
    }
    for (; i < len; i++) {
        uint64_t x = src[i];
        x = ((x & 0x5555555555555555) <<  1) | ((x & 0xaaaaaaaaaaaaaaaa) >>  1);
        x = ((x & 0x3333333333333333) <<  2) | ((x & 0xcccccccccccccccc) >>  2);
        x = ((x & 0x0f0f0f0f0f0f0f0f) <<  4) | ((x & 0xf0f0f0f0f0f0f0f0) >>  4);
        x = ((x & 0x00ff00ff00ff00ff) <<  8) | ((x & 0xff00ff00ff00ff00) >>  8);
        x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16);
        x = ((x & 0x00000000ffffffff) << 32) | ((x & 0xffffffff00000000) >> 32);
        dest[len - 1 - i] = x;
    }
}
#endif

void _hs_bitvec_reverse_bits(HsWord *dest, const HsWord *src, HsInt len) {
#ifdef __x86_64__
    if (__builtin_cpu_supports("avx2")) {
        reverse_bits_avx(dest, src, len);
    } else {
        reverse_bits_sse(dest, src, len);
    }
#else
    if (sizeof(HsWord) == 8) {
        // 64 bit
        for (size_t i = 0; i < len; i++) {
            uint64_t x = src[i];
            x = ((x & 0x5555555555555555) <<  1) | ((x & 0xaaaaaaaaaaaaaaaa) >>  1);
            x = ((x & 0x3333333333333333) <<  2) | ((x & 0xcccccccccccccccc) >>  2);
            x = ((x & 0x0f0f0f0f0f0f0f0f) <<  4) | ((x & 0xf0f0f0f0f0f0f0f0) >>  4);
            x = ((x & 0x00ff00ff00ff00ff) <<  8) | ((x & 0xff00ff00ff00ff00) >>  8);
            x = ((x & 0x0000ffff0000ffff) << 16) | ((x & 0xffff0000ffff0000) >> 16);
            x = ((x & 0x00000000ffffffff) << 32) | ((x & 0xffffffff00000000) >> 32);
            dest[len - 1 - i] = x;
        }
    } else {
        // 32 bit
        for (size_t i = 0; i < len; i++) {
            uint32_t x = src[i];
            x = ((x & 0x55555555) <<  1) | ((x & 0xaaaaaaaa) >>  1);
            x = ((x & 0x33333333) <<  2) | ((x & 0xcccccccc) >>  2);
            x = ((x & 0x0f0f0f0f) <<  4) | ((x & 0xf0f0f0f0) >>  4);
            x = ((x & 0x00ff00ff) <<  8) | ((x & 0xff00ff00) >>  8);
            x = ((x & 0x0000ffff) << 16) | ((x & 0xffff0000) >> 16);
            dest[len - 1 - i] = x;
        }
    }
#endif
}


#ifdef __x86_64__
static HsInt bit_index_sse(const uint64_t *src, HsInt len, HsBool bit) {
    __m128i zero = _mm_setzero_si128();
    __m128i bit_mask_128;
    uint64_t bit_mask_64;
    if (bit) {
        bit_mask_128 = zero;
        bit_mask_64 = 0;
    } else {
        bit_mask_128 = _mm_set1_epi64x(0xffffffffffffffff);
        bit_mask_64 = 0xffffffffffffffff;
    }
    size_t i = 0;
    for (; i < (len & (~0x1)); i += 2) {
        __m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i *) (src + i)), bit_mask_128);
        uint16_t mask = ~_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero));
        if (mask != 0) {
            size_t idx = __builtin_ctz(mask) >> 3;
            uint64_t x = src[i + idx] ^ bit_mask_64;
            return ((i + idx) << 6) + __builtin_ctzll(x);
        }
    }
    for (; i < len; i++) {
        uint64_t x = src[i] ^ bit_mask_64;
        if (x != 0) {
            return (i << 6) + __builtin_ctzll(x);
        }
    }
    return -1;
}

__attribute__((target("avx2")))
static HsInt bit_index_avx(const uint64_t *src, HsInt len, HsBool bit) {
    __m256i zero = _mm256_setzero_si256();
    __m256i bit_mask_256;
    uint64_t bit_mask_64;
    if (bit) {
        bit_mask_256 = zero;
        bit_mask_64 = 0;
    } else {
        bit_mask_256 = _mm256_set1_epi64x(0xffffffffffffffff);
        bit_mask_64 = 0xffffffffffffffff;
    }
    size_t i = 0;
    for (; i < (len & (~0x3)); i += 4) {
        __m256i x = _mm256_xor_si256(_mm256_loadu_si256((const __m256i *) (src + i)), bit_mask_256);
        uint32_t mask = ~_mm256_movemask_epi8(_mm256_cmpeq_epi32(x, zero));
        if (mask != 0) {
            size_t idx = __builtin_ctzl(mask) >> 3;
            uint64_t x = src[i + idx] ^ bit_mask_64;
            return ((i + idx) << 6) + __builtin_ctzll(x);
        }
    }
    for (; i < len; i++) {
        uint64_t x = src[i] ^ bit_mask_64;
        if (x != 0) {
            return (i << 6) + __builtin_ctzll(x);
        }
    }
    return -1;
}
#endif

HsInt _hs_bitvec_bit_index(const HsWord *src, HsInt len, HsBool bit) {
#ifdef __x86_64__
    if (__builtin_cpu_supports("avx2")) {
        return bit_index_avx(src, len, bit);
    } else {
        return bit_index_sse(src, len, bit);
    }
#else
    HsWord bit_mask;
    if (bit) {
        bit_mask = 0;
    } else {
        bit_mask = -1;
    }
    for (size_t i = 0; i < len; i++) {
        HsWord x = src[i] ^ bit_mask;
        if (x != 0) {
            return (i << 3) * sizeof(HsWord) + __builtin_ctzll(x);
        }
    }
    return -1;
#endif
}


#ifdef __x86_64__
__attribute__((target("popcnt")))
static HsInt nth_bit_index_popcnt(const uint64_t *src, HsInt len, HsBool bit, HsInt n) {
    uint64_t bit_mask;
    if (bit) {
        bit_mask = 0;
    } else {
        bit_mask = -1;
    }
    for (size_t i = 0; i < len; i++) {
        uint64_t x = src[i] ^ bit_mask;

        HsInt count = _mm_popcnt_u64(x);
        if (n <= count) {
            for (size_t i = 0; i < n - 1; i++) {
                // clear lowest set bit
                x &= x - 1;
            }
            return (i << 6) + __builtin_ctzll(x);
        } else {
            n -= count;
        }
    }
    return -1;
}
#endif

HsInt _hs_bitvec_nth_bit_index(const HsWord *src, HsInt len, HsBool bit, HsInt n) {
#ifdef __x86_64__
    if (__builtin_cpu_supports("popcnt")) {
        return nth_bit_index_popcnt(src, len, bit, n);
    }
#endif
    HsWord bit_mask;
    if (bit) {
        bit_mask = 0;
    } else {
        bit_mask = -1;
    }
    for (size_t i = 0; i < len; i++) {
        HsWord x = src[i] ^ bit_mask;

        // popcount
        HsWord count = x - ((x >> 1) & 0x5555555555555555);
        count = (count & 0x3333333333333333) + ((count >> 2) & 0x3333333333333333);
        count = (count + (count >> 4)) & 0x0f0f0f0f0f0f0f0f;
        count = (count * 0x101010101010101) >> 56;

        if (n <= count) {
            for (size_t i = 0; i < n - 1; i++) {
                // clear lowest set bit
                x &= x - 1;
            }
            return (i << 3) * sizeof(HsWord) + __builtin_ctzll(x);
        } else {
            n -= count;
        }
    }
    return -1;
}


#ifdef __x86_64__
__attribute__((target("popcnt,bmi2")))
static HsInt select_bits_pext(uint64_t *dest, const uint64_t *src, const uint64_t *mask, HsInt len, HsBool exclude) {
    uint64_t bit_mask;
    if (exclude) {
        bit_mask = -1;
    } else {
        bit_mask = 0;
    }
    HsInt off = 0; // offset in bits into `dest`
    for (size_t i = 0; i < len; i++) {
        uint64_t x = src[i];
        uint64_t m = mask[i] ^ bit_mask;
        HsInt count = _mm_popcnt_u64(m);
        uint64_t y = _pext_u64(x, m);
        HsInt off_words = off >> 6;
        HsInt off_bits = off & 0x3f;
        if (off_bits == 0) {
            dest[off_words] = y;
        } else {
            dest[off_words] |= y << off_bits;
            dest[off_words + 1] = y >> (64 - off_bits);
        }
        off += count;
    }
    return off;
}
#endif

HsInt _hs_bitvec_select_bits(HsWord *dest, const HsWord *src, const HsWord *mask, HsInt len, HsBool exclude) {
#ifdef __x86_64__
    if (__builtin_cpu_supports("popcnt") && __builtin_cpu_supports("bmi2")) {
        return select_bits_pext(dest, src, mask, len, exclude);
    }
#endif
    HsWord bit_mask;
    if (exclude) {
        bit_mask = -1;
    } else {
        bit_mask = 0;
    }
    HsInt off = 0; // offset in bits into `dest`
    for (size_t i = 0; i < len; i++) {
        HsWord x = src[i];
        HsWord m = mask[i] ^ bit_mask;

        // pext
        HsWord y = 0;
        HsInt count = 0;
        if (m == -1) {
            y = x;
            count = sizeof(HsWord) * 8;
        } else {
            HsWord bb = 1;
            for (; m != 0; bb <<= 1) {
                if (x & m & -m) {
                    y |= bb;
                }
                m &= m - 1;
            }
            if (sizeof(HsWord) == 8) {
                count = __builtin_ctzll(bb);
            } else {
                count = __builtin_ctzl(bb);
            }
        }

        if (sizeof(HsWord) == 8) {
            // 64 bit
            HsInt off_words = off >> 6;
            HsInt off_bits = off & 0x3f;
            if (off_bits == 0) {
                dest[off_words] = y;
            } else {
                dest[off_words] |= y << off_bits;
                dest[off_words + 1] = y >> (64 - off_bits);
            }
            off += count;
        } else {
            // 32 bit
            HsInt off_words = off >> 5;
            HsInt off_bits = off & 0x1f;
            if (off_bits == 0) {
                dest[off_words] = y;
            } else {
                dest[off_words] |= y << off_bits;
                dest[off_words + 1] = y >> (32 - off_bits);
            }
            off += count;
        }
    }
    return off;
}