1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE RankNTypes #-}
#ifndef BITVEC_THREADSAFE
module Tests.SetOps (setOpTests) where
#else
module Tests.SetOpsTS (setOpTests) where
#endif
import Support (twoTimesMore)
import Control.Monad
import Control.Monad.ST
import Data.Bit
import Data.Bits
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Unboxed.Mutable as MU
import Test.Tasty
import Test.Tasty.QuickCheck hiding ((.&.))
setOpTests :: TestTree
setOpTests = testGroup "Set operations"
[ testProperty "generalize1" prop_generalize1
, testProperty "generalize2" prop_generalize2
, twoTimesMore
$ testProperty "zipBits" prop_zipBits
, testProperty "zipInPlace" prop_zipInPlace
, testProperty "mapBits" prop_mapBits
, testProperty "mapInPlace" prop_mapInPlace
, testProperty "union" prop_union_def
, testProperty "intersection" prop_intersection_def
, testProperty "difference" prop_difference_def
, testProperty "symDiff" prop_symDiff_def
, mkGroup "invertBits" prop_invertBits
, testProperty "invertInPlace" prop_invertInPlace
, testProperty "invertInPlaceWords" prop_invertInPlaceWords
, testProperty "invertInPlace middle" prop_invertInPlace_middle
, testProperty "invertInPlaceLong middle" prop_invertInPlaceLong_middle
, mkGroup "reverseBits" prop_reverseBits
, testProperty "reverseInPlace" prop_reverseInPlace
, testProperty "reverseInPlaceWords" prop_reverseInPlaceWords
, testProperty "reverseInPlace middle" prop_reverseInPlace_middle
, testProperty "reverseInPlaceLong middle" prop_reverseInPlaceLong_middle
, mkGroup2 "selectBits" prop_selectBits_def
, mkGroup2 "excludeBits" prop_excludeBits_def
, mkGroup "countBits" prop_countBits_def
]
mkGroup :: String -> (U.Vector Bit -> Property) -> TestTree
mkGroup name prop = testGroup name
[ testProperty "simple" prop
, testProperty "simple_long" (prop . getLarge)
, testProperty "middle" propMiddle
, testProperty "middle_long" propMiddleLong
]
where
f m = let n = fromIntegral m :: Double in
odd (truncate (exp (abs (sin n) * 10)) :: Integer)
propMiddle (NonNegative from) (NonNegative len) (NonNegative excess) =
prop (U.slice from len (U.generate (from + len + excess) (Bit . f)))
propMiddleLong (NonNegative x) (NonNegative y) (NonNegative z) =
propMiddle (NonNegative $ x * 31) (NonNegative $ y * 37) (NonNegative $ z * 29)
mkGroup2 :: String -> (U.Vector Bit -> U.Vector Bit -> Property) -> TestTree
mkGroup2 name prop = testGroup name
[ testProperty "simple" prop
, testProperty "simple_long" (\(Large xs) (Large ys) -> prop xs ys)
, testProperty "middle" propMiddle
, testProperty "middle_long" propMiddleLong
]
where
f m = let n = fromIntegral m :: Double in
odd (truncate (exp (abs (sin n) * 10)) :: Integer)
propMiddle (NonNegative from1) (NonNegative len1) (NonNegative excess1) (NonNegative from2) (NonNegative len2) (NonNegative excess2) =
prop (U.slice from1 len1 (U.generate (from1 + len1 + excess1) (Bit . f))) (U.slice from2 len2 (U.generate (from2 + len2 + excess2) (Bit . f)))
propMiddleLong (NonNegative x1) (NonNegative y1) (NonNegative z1) (NonNegative x2) (NonNegative y2) (NonNegative z2) =
propMiddle (NonNegative $ x1 * 31) (NonNegative $ y1 * 37) (NonNegative $ z1 * 29) (NonNegative $ x2 * 31) (NonNegative $ y2 * 37) (NonNegative $ z2 * 29)
prop_generalize1 :: Fun Bit Bit -> Bit -> Property
prop_generalize1 fun x =
applyFun fun x === generalize1 (applyFun fun) x
prop_generalize2 :: Fun (Bit, Bit) Bit -> Bit -> Bit -> Property
prop_generalize2 fun x y =
curry (applyFun fun) x y === generalize2 (curry (applyFun fun)) x y
prop_union_def :: U.Vector Bit -> U.Vector Bit -> Property
prop_union_def xs ys =
xs .|. ys === U.zipWith (.|.) xs ys
prop_intersection_def :: U.Vector Bit -> U.Vector Bit -> Property
prop_intersection_def xs ys =
xs .&. ys === U.zipWith (.&.) xs ys
prop_difference_def :: U.Vector Bit -> U.Vector Bit -> Property
prop_difference_def xs ys =
zipBits diff xs ys === U.zipWith diff xs ys
where
diff x y = x .&. complement y
prop_symDiff_def :: U.Vector Bit -> U.Vector Bit -> Property
prop_symDiff_def xs ys =
xs `xor` ys === U.zipWith xor xs ys
prop_zipBits :: Fun (Bit, Bit) Bit -> U.Vector Bit -> U.Vector Bit -> Property
prop_zipBits fun xs ys =
U.zipWith f xs ys === zipBits (generalize2 f) xs ys
where
f = curry $ applyFun fun
prop_zipInPlace :: Fun (Bit, Bit) Bit -> U.Vector Bit -> U.Vector Bit -> Property
prop_zipInPlace fun xs ys =
U.zipWith f xs ys === U.take (min (U.length xs) (U.length ys)) (U.modify (zipInPlace (generalize2 f) xs) ys)
where
f = curry $ applyFun fun
prop_mapBits :: Fun Bit Bit -> U.Vector Bit -> Property
prop_mapBits fun xs =
U.map (applyFun fun) xs === mapBits (generalize1 (applyFun fun)) xs
prop_mapInPlace :: Fun Bit Bit -> U.Vector Bit -> Property
prop_mapInPlace fun xs =
U.map (applyFun fun) xs === U.modify (mapInPlace (generalize1 (applyFun fun))) xs
prop_invertBits :: U.Vector Bit -> Property
prop_invertBits xs =
U.map complement xs === complement xs
prop_invertInPlace :: U.Vector Bit -> Property
prop_invertInPlace xs =
U.map complement xs === U.modify invertInPlace xs
prop_invertInPlaceWords :: Large (U.Vector Bit) -> Property
prop_invertInPlaceWords = prop_invertInPlace . getLarge
prop_invertInPlace_middle :: NonNegative Int -> NonNegative Int -> NonNegative Int -> Property
prop_invertInPlace_middle (NonNegative from) (NonNegative len) (NonNegative excess) = runST $ do
let totalLen = from + len + excess
vec <- MU.new totalLen
forM_ [0 .. totalLen - 1] $ \i ->
MU.write vec i (Bit (odd i))
ref <- U.freeze vec
let middle = MU.slice from len vec
invertInPlace middle
wec <- U.unsafeFreeze vec
let refLeft = U.take from ref
wecLeft = U.take from wec
refRight = U.drop (from + len) ref
wecRight = U.drop (from + len) wec
refMiddle = U.map complement (U.take len (U.drop from ref))
wecMiddle = U.take len (U.drop from wec)
pure $ refLeft === wecLeft .&&. refRight === wecRight .&&. refMiddle === wecMiddle
prop_invertInPlaceLong_middle :: NonNegative Int -> NonNegative Int -> NonNegative Int -> Property
prop_invertInPlaceLong_middle (NonNegative x) (NonNegative y) (NonNegative z) =
prop_invertInPlace_middle (NonNegative $ x * 31) (NonNegative $ y * 37) (NonNegative $ z * 29)
prop_reverseBits :: U.Vector Bit -> Property
prop_reverseBits xs =
U.reverse xs === reverseBits xs
prop_reverseInPlace :: U.Vector Bit -> Property
prop_reverseInPlace xs =
U.reverse xs === U.modify reverseInPlace xs
prop_reverseInPlaceWords :: Large (U.Vector Bit) -> Property
prop_reverseInPlaceWords = prop_reverseInPlace . getLarge
prop_reverseInPlace_middle :: NonNegative Int -> NonNegative Int -> NonNegative Int -> Property
prop_reverseInPlace_middle (NonNegative from) (NonNegative len) (NonNegative excess) = runST $ do
let totalLen = from + len + excess
vec <- MU.new totalLen
forM_ [0 .. totalLen - 1] $ \i ->
MU.write vec i (Bit (odd i))
ref <- U.freeze vec
let middle = MU.slice from len vec
reverseInPlace middle
wec <- U.unsafeFreeze vec
let refLeft = U.take from ref
wecLeft = U.take from wec
refRight = U.drop (from + len) ref
wecRight = U.drop (from + len) wec
refMiddle = U.reverse (U.take len (U.drop from ref))
wecMiddle = U.take len (U.drop from wec)
pure $ refLeft === wecLeft .&&. refRight === wecRight .&&. refMiddle === wecMiddle
prop_reverseInPlaceLong_middle :: NonNegative Int -> NonNegative Int -> NonNegative Int -> Property
prop_reverseInPlaceLong_middle (NonNegative x) (NonNegative y) (NonNegative z) =
prop_reverseInPlace_middle (NonNegative $ x * 31) (NonNegative $ y * 37) (NonNegative $ z * 29)
select :: U.Unbox a => U.Vector Bit -> U.Vector a -> U.Vector a
select mask ws = U.map snd (U.filter (unBit . fst) (U.zip mask ws))
exclude :: U.Unbox a => U.Vector Bit -> U.Vector a -> U.Vector a
exclude mask ws = U.map snd (U.filter (not . unBit . fst) (U.zip mask ws))
prop_selectBits_def :: U.Vector Bit -> U.Vector Bit -> Property
prop_selectBits_def xs ys = selectBits xs ys === select xs ys
prop_excludeBits_def :: U.Vector Bit -> U.Vector Bit -> Property
prop_excludeBits_def xs ys = excludeBits xs ys === exclude xs ys
prop_countBits_def :: U.Vector Bit -> Property
prop_countBits_def xs = countBits xs === U.length (selectBits xs xs)
-------------------------------------------------------------------------------
generalize1 :: (Bit -> Bit) -> (forall a. Bits a => a -> a)
generalize1 f = case (f (Bit False), f (Bit True)) of
(Bit False, Bit False) -> const zeroBits
(Bit False, Bit True) -> id
(Bit True, Bit False) -> complement
(Bit True, Bit True) -> const $ complement zeroBits
generalize2 :: (Bit -> Bit -> Bit) -> (forall a. Bits a => a -> a -> a)
generalize2 f = case (f (Bit False) (Bit False), f (Bit False) (Bit True), f (Bit True) (Bit False), f (Bit True) (Bit True)) of
(Bit False, Bit False, Bit False, Bit False) -> \_ _ -> zeroBits
(Bit False, Bit False, Bit False, Bit True) -> \x y -> x .&. y
(Bit False, Bit False, Bit True, Bit False) -> \x y -> x .&. complement y
(Bit False, Bit False, Bit True, Bit True) -> \x _ -> x
(Bit False, Bit True, Bit False, Bit False) -> \x y -> complement x .&. y
(Bit False, Bit True, Bit False, Bit True) -> \_ y -> y
(Bit False, Bit True, Bit True, Bit False) -> \x y -> x `xor` y
(Bit False, Bit True, Bit True, Bit True) -> \x y -> x .|. y
(Bit True, Bit False, Bit False, Bit False) -> \x y -> complement (x .|. y)
(Bit True, Bit False, Bit False, Bit True) -> \x y -> complement (x `xor` y)
(Bit True, Bit False, Bit True, Bit False) -> \_ y -> complement y
(Bit True, Bit False, Bit True, Bit True) -> \x y -> x .|. complement y
(Bit True, Bit True, Bit False, Bit False) -> \x _ -> complement x
(Bit True, Bit True, Bit False, Bit True) -> \x y -> complement x .|. y
(Bit True, Bit True, Bit True, Bit False) -> \x y -> complement (x .&. y)
(Bit True, Bit True, Bit True, Bit True) -> \_ _ -> complement zeroBits
|