1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
{-# LANGUAGE CPP, BangPatterns, Rank2Types #-}
-- |
-- Module : FastPut
-- Copyright : (c) 2010 Simon Meier
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : https://github.com/blaze-builder
-- Stability : stable
-- Portability : tested on GHC only
--
-- Implementation of a 'Put' monad with similar performance characteristics
-- like the 'Builder' monoid.
--
module FastPut where
import Foreign
import Data.Monoid
import Control.Monad (unless)
import qualified Data.ByteString as S
import qualified Data.ByteString.Lazy as L
#ifdef BYTESTRING_IN_BASE
import Data.ByteString.Base (inlinePerformIO)
import qualified Data.ByteString.Base as S
import qualified Data.ByteString.Lazy.Base as L -- FIXME: is this the right module for access to 'Chunks'?
#else
import Data.ByteString.Internal (inlinePerformIO)
import qualified Data.ByteString.Internal as S
import qualified Data.ByteString.Lazy.Internal as L
#endif
import qualified Blaze.ByteString.Builder.Internal as B
import qualified Blaze.ByteString.Builder.Write as B
import Blaze.ByteString.Builder.Write (Write(..))
import qualified Blaze.ByteString.Builder.Word as B
import Blaze.ByteString.Builder.Word (writeWord8)
import Criterion.Main
------------------------------------------------------------------------------
-- Benchmarks
------------------------------------------------------------------------------
main :: IO ()
main = defaultMain $ concat
[ return $ bench "cost of putBuilder" $ whnf
(L.length . toLazyByteString2 . mapM_ (fromBuilder . fromWord8))
word8s
, benchmark "putBuilder"
(fromBuilder . mconcat . map fromWord8)
(mconcat . map B.fromWord8)
word8s
, benchmark "fromWriteSingleton"
(mapM_ putWord8)
(mconcat . map B.fromWord8)
word8s
, benchmark "fromWrite"
(mapM_ (putWrite . writeWord8))
(mconcat . map (B.fromWrite . writeWord8))
word8s
]
where
benchmark name putF builderF x =
[ bench (name ++ " Put") $
whnf (L.length . toLazyByteString2 . putF) x
, bench (name ++ " Builder") $
whnf (L.length . B.toLazyByteString . builderF) x
]
word8s :: [Word8]
word8s = take 100000 $ cycle [0..]
{-# NOINLINE word8s #-}
------------------------------------------------------------------------------
-- The Put type
------------------------------------------------------------------------------
data BufRange = BufRange {-# UNPACK #-} !(Ptr Word8) {-# UNPACK #-} !(Ptr Word8)
newtype Put a = Put {
unPut :: forall r. (a -> PutStep r) -> PutStep r
}
data PutSignal a =
Done {-# UNPACK #-} !(Ptr Word8) a
| BufferFull
{-# UNPACK #-} !Int
{-# UNPACK #-} !(Ptr Word8)
!(PutStep a)
| InsertByteString
{-# UNPACK #-} !(Ptr Word8)
!S.ByteString
!(PutStep a)
type PutStep a = BufRange -> IO (PutSignal a)
instance Monad Put where
return x = Put $ \k -> k x
{-# INLINE return #-}
m >>= f = Put $ \k -> unPut m (\x -> unPut (f x) k)
{-# INLINE (>>=) #-}
m >> n = Put $ \k -> unPut m (\_ -> unPut n k)
{-# INLINE (>>) #-}
------------------------------------------------------------------------------
-- The Builder type with equal signals as the Put type
------------------------------------------------------------------------------
newtype Builder = Builder (forall r. PutStep r -> PutStep r)
instance Monoid Builder where
mempty = Builder id
{-# INLINE mempty #-}
(Builder b1) `mappend` (Builder b2) = Builder $ b1 . b2
{-# INLINE mappend #-}
mconcat = foldr mappend mempty
{-# INLINE mconcat #-}
fromBuilder :: Builder -> Put ()
fromBuilder (Builder build) = Put $ \k -> build (k ())
toBuilder :: Put () -> Builder
toBuilder (Put put) = Builder $ \k -> put (\_ -> k)
fromWrite :: Write -> Builder
fromWrite (Write size io) =
Builder step
where
step k (BufRange pf pe)
| pf `plusPtr` size <= pe = do
io pf
let !br' = BufRange (pf `plusPtr` size) pe
k br'
| otherwise = return $ BufferFull size pf (step k)
{-# INLINE fromWrite #-}
fromWriteSingleton :: (a -> Write) -> a -> Builder
fromWriteSingleton write =
mkPut
where
mkPut x = Builder step
where
step k (BufRange pf pe)
| pf `plusPtr` size <= pe = do
io pf
let !br' = BufRange (pf `plusPtr` size) pe
k br'
| otherwise = return $ BufferFull size pf (step k)
where
Write size io = write x
{-# INLINE fromWriteSingleton #-}
fromWord8 :: Word8 -> Builder
fromWord8 = fromWriteSingleton writeWord8
------------------------------------------------------------------------------
-- Implementations
------------------------------------------------------------------------------
putWord8 :: Word8 -> Put ()
putWord8 = putWriteSingleton writeWord8
putWrite :: Write -> Put ()
putWrite (Write size io) =
Put step
where
step k (BufRange pf pe)
| pf `plusPtr` size <= pe = do
io pf
let !br' = BufRange (pf `plusPtr` size) pe
k () br'
| otherwise = return $ BufferFull size pf (step k)
{-# INLINE putWrite #-}
putWriteSingleton :: (a -> Write) -> a -> Put ()
putWriteSingleton write =
mkPut
where
mkPut x = Put step
where
step k (BufRange pf pe)
| pf `plusPtr` size <= pe = do
io pf
let !br' = BufRange (pf `plusPtr` size) pe
k () br'
| otherwise = return $ BufferFull size pf (step k)
where
Write size io = write x
{-# INLINE putWriteSingleton #-}
putBuilder :: B.Builder -> Put ()
putBuilder (B.Builder b) =
Put step
where
finalStep _ pf = return $ B.Done pf
step k = go (b finalStep)
where
go buildStep (BufRange pf pe) = do
signal <- buildStep pf pe
case signal of
B.Done pf' -> do
let !br' = BufRange pf' pe
k () br'
B.BufferFull minSize pf' nextBuildStep ->
return $ BufferFull minSize pf' (go nextBuildStep)
B.ModifyChunks _ _ _ ->
error "putBuilder: ModifyChunks not implemented"
{-
m >>= f = GetC $ \done empty pe ->
runGetC m (\pr' x -> runGetC (f x) done empty pe pr')
(\m' -> empty (m' >>= f))
pe
newtype GetC r a = GetC {
runGetC ::
(Ptr Word8 -> a -> IO r) -> -- done
(GetC r a -> IO r ) -> -- empty buffer
Ptr Word8 -> -- end of buffer
Ptr Word8 -> -- next byte to read
IO r
}
instance Functor (GetC r) where
fmap f g = GetC $ \done empty ->
runGetC g (\pr' x -> done pr' (f x))
(\g' -> empty (fmap f g'))
instance Monad (GetC r) where
return x = GetC $ \done _ _ pr -> done pr x
m >>= f = GetC $ \done empty pe ->
runGetC m (\pr' x -> runGetC (f x) done empty pe pr')
(\m' -> empty (m' >>= f))
pe
-}
------------------------------------------------------------------------------
-- Internal global constants.
------------------------------------------------------------------------------
-- | Default size (~32kb) for the buffer that becomes a chunk of the output
-- stream once it is filled.
--
defaultBufferSize :: Int
defaultBufferSize = 32 * 1024 - overhead -- Copied from Data.ByteString.Lazy.
where overhead = 2 * sizeOf (undefined :: Int)
-- | The minimal length (~4kb) a buffer must have before filling it and
-- outputting it as a chunk of the output stream.
--
-- This size determines when a buffer is spilled after a 'flush' or a direct
-- bytestring insertion. It is also the size of the first chunk generated by
-- 'toLazyByteString'.
defaultMinimalBufferSize :: Int
defaultMinimalBufferSize = 4 * 1024 - overhead
where overhead = 2 * sizeOf (undefined :: Int)
-- | The default length (64) for the first buffer to be allocated when
-- converting a 'Builder' to a lazy bytestring.
--
-- See 'toLazyByteStringWith' for further explanation.
defaultFirstBufferSize :: Int
defaultFirstBufferSize = 64
-- | The maximal number of bytes for that copying is cheaper than direct
-- insertion into the output stream. This takes into account the fragmentation
-- that may occur in the output buffer due to the early 'flush' implied by the
-- direct bytestring insertion.
--
-- @'defaultMaximalCopySize' = 2 * 'defaultMinimalBufferSize'@
--
defaultMaximalCopySize :: Int
defaultMaximalCopySize = 2 * defaultMinimalBufferSize
------------------------------------------------------------------------------
-- Flushing and running a Builder
------------------------------------------------------------------------------
-- | Output all data written in the current buffer and start a new chunk.
--
-- The use uf this function depends on how the resulting bytestrings are
-- consumed. 'flush' is possibly not very useful in non-interactive scenarios.
-- However, it is kept for compatibility with the builder provided by
-- Data.Binary.Builder.
--
-- When using 'toLazyByteString' to extract a lazy 'L.ByteString' from a
-- 'Builder', this means that a new chunk will be started in the resulting lazy
-- 'L.ByteString'. The remaining part of the buffer is spilled, if the
-- remaining free space is smaller than the minimal desired buffer size.
--
{-
flush :: Builder
flush = Builder $ \k pf _ -> return $ ModifyChunks pf id k
-}
-- | Run a 'Builder' with the given buffer sizes.
--
-- Use this function for integrating the 'Builder' type with other libraries
-- that generate lazy bytestrings.
--
-- Note that the builders should guarantee that on average the desired chunk
-- size is attained. Builders may decide to start a new buffer and not
-- completely fill the existing buffer, if this is faster. However, they should
-- not spill too much of the buffer, if they cannot compensate for it.
--
-- A call @toLazyByteStringWith bufSize minBufSize firstBufSize@ will generate
-- a lazy bytestring according to the following strategy. First, we allocate
-- a buffer of size @firstBufSize@ and start filling it. If it overflows, we
-- allocate a buffer of size @minBufSize@ and copy the first buffer to it in
-- order to avoid generating a too small chunk. Finally, every next buffer will
-- be of size @bufSize@. This, slow startup strategy is required to achieve
-- good speed for short (<200 bytes) resulting bytestrings, as for them the
-- allocation cost is of a large buffer cannot be compensated. Moreover, this
-- strategy also allows us to avoid spilling too much memory for short
-- resulting bytestrings.
--
-- Note that setting @firstBufSize >= minBufSize@ implies that the first buffer
-- is no longer copied but allocated and filled directly. Hence, setting
-- @firstBufSize = bufSize@ means that all chunks will use an underlying buffer
-- of size @bufSize@. This is recommended, if you know that you always output
-- more than @minBufSize@ bytes.
toLazyByteStringWith
:: Int -- ^ Buffer size (upper-bounds the resulting chunk size).
-> Int -- ^ Minimal free buffer space for continuing filling
-- the same buffer after a 'flush' or a direct bytestring
-- insertion. This corresponds to the minimal desired
-- chunk size.
-> Int -- ^ Size of the first buffer to be used and copied for
-- larger resulting sequences
-> Put a -- ^ Builder to run.
-> L.ByteString -- ^ Lazy bytestring to output after the builder is
-- finished.
-> L.ByteString -- ^ Resulting lazy bytestring
toLazyByteStringWith bufSize minBufSize firstBufSize (Put b) k =
inlinePerformIO $ fillFirstBuffer (b finalStep)
where
finalStep _ (BufRange pf _) = return $ Done pf undefined
-- fill a first very small buffer, if we need more space then copy it
-- to the new buffer of size 'minBufSize'. This way we don't pay the
-- allocation cost of the big 'bufSize' buffer, when outputting only
-- small sequences.
fillFirstBuffer !step0
| minBufSize <= firstBufSize = fillNewBuffer firstBufSize step0
| otherwise = do
fpbuf <- S.mallocByteString firstBufSize
withForeignPtr fpbuf $ \pf -> do
let !br = BufRange pf (pf `plusPtr` firstBufSize)
mkbs pf' = S.PS fpbuf 0 (pf' `minusPtr` pf)
{-# INLINE mkbs #-}
next <- step0 br
case next of
Done pf' _
| pf' == pf -> return k
| otherwise -> return $ L.Chunk (mkbs pf') k
BufferFull newSize pf' nextStep -> do
let !l = pf' `minusPtr` pf
fillNewBuffer (max (l + newSize) minBufSize) $
\(BufRange pfNew peNew) -> do
copyBytes pfNew pf l
let !brNew = BufRange (pfNew `plusPtr` l) peNew
nextStep brNew
InsertByteString _ _ _ -> error "not yet implemented"
{-
ModifyChunks pf' bsk nextStep(
| pf' == pf ->
return $ bsk (inlinePerformIO $ fillNewBuffer bufSize nextStep)
| otherwise ->
return $ L.Chunk (mkbs pf')
(bsk (inlinePerformIO $ fillNewBuffer bufSize nextStep))
-}
-- allocate and fill a new buffer
fillNewBuffer !size !step0 = do
fpbuf <- S.mallocByteString size
withForeignPtr fpbuf $ fillBuffer fpbuf
where
fillBuffer fpbuf !pbuf = fill pbuf step0
where
!pe = pbuf `plusPtr` size
fill !pf !step = do
let !br = BufRange pf pe
next <- step br
let mkbs pf' = S.PS fpbuf (pf `minusPtr` pbuf) (pf' `minusPtr` pf)
{-# INLINE mkbs #-}
case next of
Done pf' _
| pf' == pf -> return k
| otherwise -> return $ L.Chunk (mkbs pf') k
BufferFull newSize pf' nextStep ->
return $ L.Chunk (mkbs pf')
(inlinePerformIO $
fillNewBuffer (max newSize bufSize) nextStep)
InsertByteString _ _ _ -> error "not yet implemented2"
{-
ModifyChunks pf' bsk nextStep
| pf' == pf ->
return $ bsk (inlinePerformIO $ fill pf' nextStep)
| minBufSize < pe `minusPtr` pf' ->
return $ L.Chunk (mkbs pf')
(bsk (inlinePerformIO $ fill pf' nextStep))
| otherwise ->
return $ L.Chunk (mkbs pf')
(bsk (inlinePerformIO $ fillNewBuffer bufSize nextStep))
-}
-- | Extract the lazy 'L.ByteString' from the builder by running it with default
-- buffer sizes. Use this function, if you do not have any special
-- considerations with respect to buffer sizes.
--
-- @ 'toLazyByteString' b = 'toLazyByteStringWith' 'defaultBufferSize' 'defaultMinimalBufferSize' 'defaultFirstBufferSize' b L.empty@
--
-- Note that @'toLazyByteString'@ is a 'Monoid' homomorphism.
--
-- > toLazyByteString mempty == mempty
-- > toLazyByteString (x `mappend` y) == toLazyByteString x `mappend` toLazyByteString y
--
-- However, in the second equation, the left-hand-side is generally faster to
-- execute.
--
toLazyByteString :: Put a -> L.ByteString
toLazyByteString b = toLazyByteStringWith
defaultBufferSize defaultMinimalBufferSize defaultFirstBufferSize b L.empty
{-# INLINE toLazyByteString #-}
------------------------------------------------------------------------------
-- Builder Enumeration
------------------------------------------------------------------------------
data BuildStream a =
BuildChunk S.ByteString (IO (BuildStream a))
| BuildYield
a
(forall b. Bool ->
Either (Maybe S.ByteString) (Put b -> IO (BuildStream b)))
enumPut :: Int -> Put a -> IO (BuildStream a)
enumPut bufSize (Put put0) =
fillBuffer bufSize (put0 finalStep)
where
finalStep :: forall b. b -> PutStep b
finalStep x (BufRange op _) = return $ Done op x
fillBuffer :: forall b. Int -> PutStep b -> IO (BuildStream b)
fillBuffer size step = do
fpbuf <- S.mallocByteString bufSize
let !pbuf = unsafeForeignPtrToPtr fpbuf
-- safe due to later reference of fpbuf
-- BETTER than withForeignPtr, as we lose a tail call otherwise
!br = BufRange pbuf (pbuf `plusPtr` size)
fillStep fpbuf br step
fillPut :: ForeignPtr Word8 -> BufRange ->
Bool -> Either (Maybe S.ByteString) (Put b -> IO (BuildStream b))
fillPut !fpbuf !(BufRange op _) False
| pbuf == op = Left Nothing
| otherwise = Left $ Just $
S.PS fpbuf 0 (op `minusPtr` pbuf)
where
pbuf = unsafeForeignPtrToPtr fpbuf
{-# INLINE pbuf #-}
fillPut !fpbuf !br True =
Right $ \(Put put) -> fillStep fpbuf br (put finalStep)
fillStep :: forall b. ForeignPtr Word8 -> BufRange -> PutStep b -> IO (BuildStream b)
fillStep !fpbuf !br@(BufRange _ ope) step = do
let pbuf = unsafeForeignPtrToPtr fpbuf
{-# INLINE pbuf #-}
signal <- step br
case signal of
Done op' x -> do -- builder completed, buffer partially filled
let !br' = BufRange op' ope
return $ BuildYield x (fillPut fpbuf br')
BufferFull minSize op' nextStep
| pbuf == op' -> do -- nothing written, larger buffer required
fillBuffer (max bufSize minSize) nextStep
| otherwise -> do -- some bytes written, new buffer required
return $ BuildChunk
(S.PS fpbuf 0 (op' `minusPtr` pbuf))
(fillBuffer (max bufSize minSize) nextStep)
InsertByteString op' bs nextStep
| S.null bs -> do -- empty bytestrings are ignored
let !br' = BufRange op' ope
fillStep fpbuf br' nextStep
| pbuf == op' -> do -- no bytes written: just insert bytestring
return $ BuildChunk bs (fillBuffer bufSize nextStep)
| otherwise -> do -- bytes written, insert buffer and bytestring
return $ BuildChunk (S.PS fpbuf 0 (op' `minusPtr` pbuf))
(return $ BuildChunk bs (fillBuffer bufSize nextStep))
toLazyByteString' :: Put () -> L.ByteString
toLazyByteString' put =
inlinePerformIO (consume `fmap` enumPut defaultBufferSize put)
where
consume :: BuildStream () -> L.ByteString
consume (BuildYield _ f) =
case f False of
Left Nothing -> L.Empty
Left (Just bs) -> L.Chunk bs L.Empty
Right _ -> error "toLazyByteString': enumPut violated postcondition"
consume (BuildChunk bs ioStream) =
L.Chunk bs $ inlinePerformIO (consume `fmap` ioStream)
{-
BufferFull minSize pf' nextStep -> do
io $ S.PS fpbuf 0 (pf' `minusPtr` pf)
fillBuffer (max bufSize minSize) nextStep
ModifyChunks pf' bsk nextStep -> do
io $ S.PS fpbuf 0 (pf' `minusPtr` pf)
L.foldrChunks (\bs -> (io bs >>)) (return ()) (bsk L.empty)
fillBuffer bufSize nextStep
-}
------------------------------------------------------------------------------
-- More explicit implementation of running builders
------------------------------------------------------------------------------
data Buffer = Buffer {-# UNPACK #-} !(ForeignPtr Word8) -- underlying pinned array
{-# UNPACK #-} !(Ptr Word8) -- beginning of slice
{-# UNPACK #-} !(Ptr Word8) -- next free byte
{-# UNPACK #-} !(Ptr Word8) -- first byte after buffer
allocBuffer :: Int -> IO Buffer
allocBuffer size = do
fpbuf <- S.mallocByteString size
let !pbuf = unsafeForeignPtrToPtr fpbuf
return $! Buffer fpbuf pbuf pbuf (pbuf `plusPtr` size)
unsafeFreezeBuffer :: Buffer -> S.ByteString
unsafeFreezeBuffer (Buffer fpbuf p0 op _) =
S.PS fpbuf 0 (op `minusPtr` p0)
unsafeFreezeNonEmptyBuffer :: Buffer -> Maybe S.ByteString
unsafeFreezeNonEmptyBuffer (Buffer fpbuf p0 op _)
| p0 == op = Nothing
| otherwise = Just $ S.PS fpbuf 0 (op `minusPtr` p0)
nextSlice :: Int -> Buffer -> Maybe Buffer
nextSlice minSize (Buffer fpbuf _ op ope)
| ope `minusPtr` op <= minSize = Nothing
| otherwise = Just (Buffer fpbuf op op ope)
runPut :: Monad m
=> (IO (PutSignal a) -> m (PutSignal a)) -- lifting of buildsteps
-> (Int -> Buffer -> m Buffer) -- output function for a guaranteedly non-empty buffer, the returned buffer will be filled next
-> (S.ByteString -> m ()) -- output function for guaranteedly non-empty bytestrings, that are inserted directly into the stream
-> Put a -- put to execute
-> Buffer -- initial buffer to be used
-> m (a, Buffer) -- result of put and remaining buffer
runPut liftIO outputBuf outputBS (Put put) =
runStep (put finalStep)
where
finalStep x !(BufRange op _) = return $ Done op x
runStep step buf@(Buffer fpbuf p0 op ope) = do
let !br = BufRange op ope
signal <- liftIO $ step br
case signal of
Done op' x -> -- put completed, buffer partially runSteped
return (x, Buffer fpbuf p0 op' ope)
BufferFull minSize op' nextStep -> do
buf' <- outputBuf minSize (Buffer fpbuf p0 op' ope)
runStep nextStep buf'
InsertByteString op' bs nextStep
| S.null bs -> -- flushing of buffer required
outputBuf 1 (Buffer fpbuf p0 op' ope) >>= runStep nextStep
| p0 == op' -> do -- no bytes written: just insert bytestring
outputBS bs
runStep nextStep buf
| otherwise -> do -- bytes written, insert buffer and bytestring
buf' <- outputBuf 1 (Buffer fpbuf p0 op' ope)
outputBS bs
runStep nextStep buf'
{-# INLINE runPut #-}
-- | A monad for lazily composing lazy bytestrings using continuations.
newtype LBSM a = LBSM { unLBSM :: (a, L.ByteString -> L.ByteString) }
instance Monad LBSM where
return x = LBSM (x, id)
(LBSM (x,k)) >>= f = let LBSM (x',k') = f x in LBSM (x', k . k')
(LBSM (_,k)) >> (LBSM (x',k')) = LBSM (x', k . k')
-- | Execute a put and return the written buffers as the chunks of a lazy
-- bytestring.
toLazyByteString2 :: Put a -> L.ByteString
toLazyByteString2 put =
k (bufToLBSCont (snd result) L.empty)
where
-- initial buffer
buf0 = inlinePerformIO $ allocBuffer defaultBufferSize
-- run put, but don't force result => we're lazy enough
LBSM (result, k) = runPut liftIO outputBuf outputBS put buf0
-- convert a buffer to a lazy bytestring continuation
bufToLBSCont = maybe id L.Chunk . unsafeFreezeNonEmptyBuffer
-- lifting an io putsignal to a lazy bytestring monad
liftIO io = LBSM (inlinePerformIO io, id)
-- add buffer as a chunk prepare allocation of new one
outputBuf minSize buf = LBSM
( inlinePerformIO $ allocBuffer (max minSize defaultBufferSize)
, bufToLBSCont buf )
-- add bytestring directly as a chunk; exploits postcondition of runPut
-- that bytestrings are non-empty
outputBS bs = LBSM ((), L.Chunk bs)
-- | A Builder that traces a message
traceBuilder :: String -> Builder
traceBuilder msg = Builder $ \k br@(BufRange op ope) -> do
putStrLn $ "traceBuilder " ++ show (op, ope) ++ ": " ++ msg
k br
flushBuilder :: Builder
flushBuilder = Builder $ \k (BufRange op _) -> do
return $ InsertByteString op S.empty k
test2 :: Word8 -> [S.ByteString]
test2 x = L.toChunks $ toLazyByteString2 $ fromBuilder $ mconcat
[ traceBuilder "before flush"
, fromWord8 48
, flushBuilder
, flushBuilder
, traceBuilder "after flush"
, fromWord8 x
]
|