File: Int.hs

package info (click to toggle)
haskell-blaze-textual 0.2.0.9-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 88 kB
  • sloc: haskell: 291; makefile: 2
file content (164 lines) | stat: -rw-r--r-- 5,561 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
{-# LANGUAGE BangPatterns, CPP, MagicHash, OverloadedStrings, UnboxedTuples #-}

-- Module:      Blaze.Text.Int
-- Copyright:   (c) 2011 MailRank, Inc.
-- License:     BSD3
-- Maintainer:  Bryan O'Sullivan <bos@serpentine.com>
-- Stability:   experimental
-- Portability: portable
--
-- Efficiently serialize an integral value as a lazy 'L.ByteString'.

module Blaze.Text.Int
    (
      digit
    , integral
    , minus
    ) where

import Blaze.ByteString.Builder
import Blaze.ByteString.Builder.Char8
import Data.ByteString.Char8 ()
import Data.Int (Int8, Int16, Int32, Int64)
import Data.Monoid (mappend, mempty)
import Data.Word (Word, Word8, Word16, Word32, Word64)
import GHC.Base (quotInt, remInt)
import GHC.Num (quotRemInteger)
import GHC.Types (Int(..))

#ifdef  __GLASGOW_HASKELL__
# if __GLASGOW_HASKELL__ < 611
import GHC.Integer.Internals
# else
import GHC.Integer.GMP.Internals
# endif
#endif

#ifdef INTEGER_GMP
# define PAIR(a,b) (# a,b #)
#else
# define PAIR(a,b) (a,b)
#endif

integral :: (Integral a, Show a) => a -> Builder
{-# RULES "integral/Int" integral = bounded :: Int -> Builder #-}
{-# RULES "integral/Int8" integral = bounded :: Int8 -> Builder #-}
{-# RULES "integral/Int16" integral = bounded :: Int16 -> Builder #-}
{-# RULES "integral/Int32" integral = bounded :: Int32 -> Builder #-}
{-# RULES "integral/Int64" integral = bounded :: Int64 -> Builder #-}
{-# RULES "integral/Word" integral = nonNegative :: Word -> Builder #-}
{-# RULES "integral/Word8" integral = nonNegative :: Word8 -> Builder #-}
{-# RULES "integral/Word16" integral = nonNegative :: Word16 -> Builder #-}
{-# RULES "integral/Word32" integral = nonNegative :: Word32 -> Builder #-}
{-# RULES "integral/Word64" integral = nonNegative :: Word64 -> Builder #-}
{-# RULES "integral/Integer" integral = integer :: Integer -> Builder #-}

-- This definition of the function is here PURELY to be used by ghci
-- and those rare cases where GHC is being invoked without
-- optimization, as otherwise the rewrite rules above should fire. The
-- test for "-0" catches an overflow if we render minBound.
integral i
    | i >= 0                 = nonNegative i
    | toByteString b == "-0" = fromString (show i)
    | otherwise              = b
  where b = minus `mappend` nonNegative (-i)
{-# NOINLINE integral #-}

bounded :: (Bounded a, Integral a) => a -> Builder
{-# SPECIALIZE bounded :: Int -> Builder #-}
{-# SPECIALIZE bounded :: Int8 -> Builder #-}
{-# SPECIALIZE bounded :: Int16 -> Builder #-}
{-# SPECIALIZE bounded :: Int32 -> Builder #-}
{-# SPECIALIZE bounded :: Int64 -> Builder #-}
bounded i
    | i >= 0        = nonNegative i
    | i > minBound  = minus `mappend` nonNegative (-i)
    | otherwise     = minus `mappend`
                      nonNegative (negate (k `quot` 10)) `mappend`
                      digit (negate (k `rem` 10))
  where k = minBound `asTypeOf` i

nonNegative :: Integral a => a -> Builder
{-# SPECIALIZE nonNegative :: Int -> Builder #-}
{-# SPECIALIZE nonNegative :: Int8 -> Builder #-}
{-# SPECIALIZE nonNegative :: Int16 -> Builder #-}
{-# SPECIALIZE nonNegative :: Int32 -> Builder #-}
{-# SPECIALIZE nonNegative :: Int64 -> Builder #-}
{-# SPECIALIZE nonNegative :: Word -> Builder #-}
{-# SPECIALIZE nonNegative :: Word8 -> Builder #-}
{-# SPECIALIZE nonNegative :: Word16 -> Builder #-}
{-# SPECIALIZE nonNegative :: Word32 -> Builder #-}
{-# SPECIALIZE nonNegative :: Word64 -> Builder #-}
nonNegative = go
  where
    go n | n < 10    = digit n
         | otherwise = go (n `quot` 10) `mappend` digit (n `rem` 10)

digit :: Integral a => a -> Builder
digit n = fromWord8 $! fromIntegral n + 48
{-# INLINE digit #-}

minus :: Builder
minus = fromWord8 45

int :: Int -> Builder
int = integral
{-# INLINE int #-}

integer :: Integer -> Builder
integer (S# i#) = int (I# i#)
integer i
    | i < 0     = minus `mappend` go (-i)
    | otherwise = go i
  where
    go n | n < maxInt = int (fromInteger n)
         | otherwise  = putH (splitf (maxInt * maxInt) n)

    splitf p n
      | p > n       = [n]
      | otherwise   = splith p (splitf (p*p) n)

    splith p (n:ns) = case n `quotRemInteger` p of
                        PAIR(q,r) | q > 0     -> q : r : splitb p ns
                                  | otherwise -> r : splitb p ns
    splith _ _      = error "splith: the impossible happened."

    splitb p (n:ns) = case n `quotRemInteger` p of
                        PAIR(q,r) -> q : r : splitb p ns
    splitb _ _      = []

data T = T !Integer !Int

fstT :: T -> Integer
fstT (T a _) = a

maxInt :: Integer
maxDigits :: Int
T maxInt maxDigits =
    until ((>mi) . (*10) . fstT) (\(T n d) -> T (n*10) (d+1)) (T 10 1)
  where mi = fromIntegral (maxBound :: Int)

putH :: [Integer] -> Builder
putH (n:ns) = case n `quotRemInteger` maxInt of
                PAIR(x,y)
                    | q > 0     -> int q `mappend` pblock r `mappend` putB ns
                    | otherwise -> int r `mappend` putB ns
                    where q = fromInteger x
                          r = fromInteger y
putH _ = error "putH: the impossible happened"

putB :: [Integer] -> Builder
putB (n:ns) = case n `quotRemInteger` maxInt of
                PAIR(x,y) -> pblock q `mappend` pblock r `mappend` putB ns
                    where q = fromInteger x
                          r = fromInteger y
putB _ = mempty

pblock :: Int -> Builder
pblock = go maxDigits
  where
    go !d !n
        | d == 1    = digit n
        | otherwise = go (d-1) q `mappend` digit r
        where q = n `quotInt` 10
              r = n `remInt` 10