File: Internal.hs

package info (click to toggle)
haskell-bzlib 0.5.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144 kB
  • sloc: haskell: 492; ansic: 13; makefile: 2
file content (600 lines) | stat: -rw-r--r-- 21,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
{-# LANGUAGE CPP, Rank2Types, DeriveDataTypeable #-}
-----------------------------------------------------------------------------
-- |
-- Copyright   :  (c) 2006-2008 Duncan Coutts
-- License     :  BSD-style
--
-- Maintainer  :  duncan@haskell.org
-- Stability   :  provisional
-- Portability :  portable (H98 + FFI)
--
-- Pure stream based interface to lower level bzlib wrapper
--
-----------------------------------------------------------------------------
module Codec.Compression.BZip.Internal (
  -- * Pure interface
  compress,
  decompress,

  -- * Monadic incremental interface
  -- ** Incremental compression
  CompressStream(..),
  compressST,
  compressIO,
  foldCompressStream,
  foldCompressStreamWithInput,

  -- ** Incremental decompression
  DecompressStream(..),
  decompressST,
  decompressIO,
  foldDecompressStream,
  foldDecompressStreamWithInput,

  -- * The compression parameter types
  CompressParams(..),
  defaultCompressParams,
  DecompressParams(..),
  defaultDecompressParams,
  Stream.BlockSize(..),
  Stream.WorkFactor(..),
  Stream.MemoryLevel(..),
  ) where

import Prelude hiding (length)
import Control.Monad (when)
import Control.Exception (Exception, throw, assert)
import Control.Monad.ST.Lazy hiding (stToIO)
import Control.Monad.ST.Strict (stToIO)
#if __GLASGOW_HASKELL__ >= 702
import qualified Control.Monad.ST.Unsafe as Unsafe (unsafeIOToST)
#else
import qualified Control.Monad.ST.Strict as Unsafe (unsafeIOToST)
#endif
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Internal as L
import qualified Data.ByteString as S
import qualified Data.ByteString.Internal as S
import Data.Typeable (Typeable)
import GHC.IO (noDuplicate)

import qualified Codec.Compression.BZip.Stream as Stream
import Codec.Compression.BZip.Stream (Stream)

-- | The full set of parameters for compression. The defaults are
-- 'defaultCompressParams'.
--
-- The 'compressBufferSize' is the size of the first output buffer containing
-- the compressed data. If you know an approximate upper bound on the size of
-- the compressed data then setting this parameter can save memory. The default
-- compression output buffer size is @16k@. If your estimate is wrong it does
-- not matter too much, the default buffer size will be used for the remaining
-- chunks.
--
data CompressParams = CompressParams {
  compressBlockSize   :: Stream.BlockSize,
  compressWorkFactor  :: Stream.WorkFactor,
  compressBufferSize  :: Int
} deriving (Show)

-- | The full set of parameters for decompression. The defaults are
-- 'defaultDecompressParams'.
--
-- The 'decompressBufferSize' is the size of the first output buffer,
-- containing the uncompressed data. If you know an exact or approximate upper
-- bound on the size of the decompressed data then setting this parameter can
-- save memory. The default decompression output buffer size is @32k@. If your
-- estimate is wrong it does not matter too much, the default buffer size will
-- be used for the remaining chunks.
--
-- One particular use case for setting the 'decompressBufferSize' is if you
-- know the exact size of the decompressed data and want to produce a strict
-- 'Data.ByteString.ByteString'. The compression and decompression functions
-- use lazy 'Data.ByteString.Lazy.ByteString's but if you set the
-- 'decompressBufferSize' correctly then you can generate a lazy
-- 'Data.ByteString.Lazy.ByteString' with exactly one chunk, which can be
-- converted to a strict 'Data.ByteString.ByteString' in @O(1)@ time using
-- @'Data.ByteString.concat' . 'Data.ByteString.Lazy.toChunks'@.
--
data DecompressParams = DecompressParams {
  decompressMemoryLevel :: Stream.MemoryLevel,
  decompressBufferSize  :: Int
} deriving (Show)

-- | The default set of parameters for compression. This is typically used with
-- the @compressWith@ function with specific parameters overridden.
--
defaultCompressParams :: CompressParams
defaultCompressParams = CompressParams {
  compressBlockSize   = Stream.DefaultBlockSize,
  compressWorkFactor  = Stream.DefaultWorkFactor,
  compressBufferSize  = defaultCompressBufferSize
}

-- | The default set of parameters for decompression. This is typically used with
-- the @compressWith@ function with specific parameters overridden.
--
defaultDecompressParams :: DecompressParams
defaultDecompressParams = DecompressParams {
  decompressMemoryLevel = Stream.DefaultMemoryLevel,
  decompressBufferSize  = defaultDecompressBufferSize
}

-- | The default chunk sizes for the output of compression and decompression
-- are 16k and 32k respectively (less a small accounting overhead).
--
defaultCompressBufferSize, defaultDecompressBufferSize :: Int
defaultCompressBufferSize   = 16 * 1024 - L.chunkOverhead
defaultDecompressBufferSize = 32 * 1024 - L.chunkOverhead


-- | The unfolding of the compression process, where you provide a sequence
-- of uncompressed data chunks as input and receive a sequence of compressed
-- data chunks as output. The process is incremental, in that the demand for
-- input and provision of output are interleaved.
--
data CompressStream m =
     CompressInputRequired {
         compressSupplyInput :: S.ByteString -> m (CompressStream m)
       }

   | CompressOutputAvailable {
        compressOutput :: !S.ByteString,
        compressNext   :: m (CompressStream m)
      }

   | CompressStreamEnd

-- | A fold over the 'CompressStream' in the given monad.
--
-- One way to look at this is that it runs the stream, using callback functions
-- for the three stream events.
--
foldCompressStream :: Monad m
                   => ((S.ByteString -> m a) -> m a)
                   -> (S.ByteString -> m a -> m a)
                   -> m a
                   -> CompressStream m -> m a
foldCompressStream input output end = fold
  where
    fold (CompressInputRequired next) =
      input (\x -> next x >>= fold)

    fold (CompressOutputAvailable outchunk next) =
      output outchunk (next >>= fold)

    fold CompressStreamEnd =
      end

-- | A variant on 'foldCompressStream' that is pure rather than operating in a
-- monad and where the input is provided by a lazy 'L.ByteString'. So we only
-- have to deal with the output and end parts, making it just like a foldr on a
-- list of output chunks.
--
-- For example:
--
-- > toChunks = foldCompressStreamWithInput (:) []
--
foldCompressStreamWithInput :: (S.ByteString -> a -> a)
                            -> a
                            -> (forall s. CompressStream (ST s))
                            -> L.ByteString
                            -> a
foldCompressStreamWithInput chunk end = \s lbs ->
    runST (fold s (L.toChunks lbs))
  where
    fold (CompressInputRequired next) [] =
      next S.empty >>= \strm -> fold strm []

    fold (CompressInputRequired next) (inchunk:inchunks) =
      next inchunk >>= \s -> fold s inchunks

    fold (CompressOutputAvailable outchunk next) inchunks = do
      r <- next >>= \s -> fold s inchunks
      return $ chunk outchunk r

    fold CompressStreamEnd _inchunks =
      return end

compress   :: CompressParams -> L.ByteString -> L.ByteString
compressST :: CompressParams -> CompressStream (ST s)
compressIO :: CompressParams -> CompressStream IO

compress   params = foldCompressStreamWithInput
                      L.Chunk L.Empty
                      (compressStreamST params)
compressST params = compressStreamST params
compressIO params = compressStreamIO params

compressStream
  :: CompressParams -> S.ByteString -> Stream (CompressStream Stream)
compressStream (CompressParams blockSize workFactor initChunkSize) =
    \chunk -> do
      Stream.compressInit blockSize Stream.Silent workFactor
      case chunk of
        _ | S.null chunk -> fillBuffers 14 --bzip2 header is 14 bytes
        S.PS inFPtr offset length -> do
          Stream.pushInputBuffer inFPtr offset length
          fillBuffers initChunkSize
  where
    -- we flick between two states:
    --   * where one or other buffer is empty
    --       - in which case we refill one or both
    --   * where both buffers are non-empty
    --       - in which case we compress until a buffer is empty

  fillBuffers :: Int -> Stream (CompressStream Stream)
  fillBuffers outChunkSize = do
#ifdef DEBUG
    Stream.consistencyCheck
#endif

    -- in this state there are two possibilities:
    --   * no outbut buffer space is available
    --       - in which case we must make more available
    --   * no input buffer is available
    --       - in which case we must supply more
    inputBufferEmpty <- Stream.inputBufferEmpty
    outputBufferFull <- Stream.outputBufferFull

    assert (inputBufferEmpty || outputBufferFull) $ return ()

    when outputBufferFull $ do
      outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize)
      Stream.pushOutputBuffer outFPtr 0 outChunkSize

    if inputBufferEmpty
      then return $ CompressInputRequired $ \chunk ->
           case chunk of
           _ | S.null chunk          -> drainBuffers True
           S.PS inFPtr offset length -> do
                Stream.pushInputBuffer inFPtr offset length
                drainBuffers False
      else drainBuffers False


  drainBuffers :: Bool -> Stream (CompressStream Stream)
  drainBuffers lastChunk = do

    inputBufferEmpty' <- Stream.inputBufferEmpty
    outputBufferFull' <- Stream.outputBufferFull
    assert(not outputBufferFull'
       && (lastChunk || not inputBufferEmpty')) $ return ()
    -- this invariant guarantees we can always make forward progress

    let action = if lastChunk then Stream.Finish else Stream.Run
    status <- Stream.compress action

    case status of
      Stream.Ok -> do
        outputBufferFull <- Stream.outputBufferFull
        if outputBufferFull
          then do (outFPtr, offset, length) <- Stream.popOutputBuffer
                  let chunk = S.PS outFPtr offset length
                  return $ CompressOutputAvailable chunk $ do
                    fillBuffers defaultCompressBufferSize
          else do fillBuffers defaultCompressBufferSize

      Stream.StreamEnd -> do
        inputBufferEmpty <- Stream.inputBufferEmpty
        assert inputBufferEmpty $ return ()
        outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable
        if outputBufferBytesAvailable > 0
          then do (outFPtr, offset, length) <- Stream.popOutputBuffer
                  let chunk = S.PS outFPtr offset length
                  Stream.finalise
                  return $ CompressOutputAvailable chunk (return CompressStreamEnd)
          else do Stream.finalise
                  return CompressStreamEnd

      Stream.Error _ msg -> fail msg


data DecompressStream m =

     DecompressInputRequired {
         decompressSupplyInput :: S.ByteString -> m (DecompressStream m)
       }

   | DecompressOutputAvailable {
         decompressOutput :: !S.ByteString,
         decompressNext   :: m (DecompressStream m)
       }

   -- | Includes any trailing unconsumed /input/ data.
   | DecompressStreamEnd {
         decompressUnconsumedInput :: S.ByteString
       }

   -- | An error code
   | DecompressStreamError {
         decompressStreamError :: DecompressError
       }

data DecompressError =
     TruncatedInput
   | DataFormatError String
   deriving (Typeable)

instance Show DecompressError where
  show TruncatedInput     = modprefix "premature end of compressed data stream"
  show (DataFormatError detail) = modprefix ("compressed data stream format error (" ++ detail ++ ")")

modprefix :: ShowS
modprefix = ("Codec.Compression.BZip: " ++)

instance Exception DecompressError

foldDecompressStream :: Monad m
                     => ((S.ByteString -> m a) -> m a)
                     -> (S.ByteString -> m a -> m a)
                     -> (S.ByteString -> m a)
                     -> (DecompressError -> m a)
                     -> DecompressStream m -> m a
foldDecompressStream input output end err = fold
  where
    fold (DecompressInputRequired next) =
      input (\x -> next x >>= fold)

    fold (DecompressOutputAvailable outchunk next) =
      output outchunk (next >>= fold)

    fold (DecompressStreamEnd inchunk) = end inchunk
    fold (DecompressStreamError derr)  = err derr

foldDecompressStreamWithInput :: (S.ByteString -> a -> a)
                              -> (L.ByteString -> a)
                              -> (DecompressError -> a)
                              -> (forall s. DecompressStream (ST s))
                              -> L.ByteString
                              -> a
foldDecompressStreamWithInput chunk end err = \s lbs ->
    runST (fold s (L.toChunks lbs))
  where
    fold (DecompressInputRequired next) [] =
      next S.empty >>= \strm -> fold strm []

    fold (DecompressInputRequired next) (inchunk:inchunks) =
      next inchunk >>= \s -> fold s inchunks

    fold (DecompressOutputAvailable outchunk next) inchunks = do
      r <- next >>= \s -> fold s inchunks
      return $ chunk outchunk r

    fold (DecompressStreamEnd inchunk) inchunks =
      return $ end (L.fromChunks (inchunk:inchunks))

    fold (DecompressStreamError derr) _ =
      return $ err derr

decompress   :: DecompressParams -> L.ByteString -> L.ByteString
decompressST :: DecompressParams -> DecompressStream (ST s)
decompressIO :: DecompressParams -> DecompressStream IO

decompress   params = foldDecompressStreamWithInput
                        L.Chunk (const L.Empty) throw
                        (decompressStreamST params)
decompressST params = decompressStreamST params
decompressIO params = decompressStreamIO params

decompressStream
  :: DecompressParams -> S.ByteString -> Stream (DecompressStream Stream)
decompressStream (DecompressParams memLevel initChunkSize) =
    \chunk -> do
      Stream.decompressInit Stream.Silent memLevel
      case chunk of
        _ | S.null chunk -> fillBuffers 4 --always an error anyway
        S.PS inFPtr offset length -> do
          Stream.pushInputBuffer inFPtr offset length
          fillBuffers initChunkSize

  where
    -- we flick between two states:
    --   * where one or other buffer is empty
    --       - in which case we refill one or both
    --   * where both buffers are non-empty
    --       - in which case we compress until a buffer is empty

  fillBuffers :: Int -> Stream (DecompressStream Stream)
  fillBuffers outChunkSize = do

    -- in this state there are two possibilities:
    --   * no outbut buffer space is available
    --       - in which case we must make more available
    --   * no input buffer is available
    --       - in which case we must supply more
    inputBufferEmpty <- Stream.inputBufferEmpty
    outputBufferFull <- Stream.outputBufferFull

    assert (inputBufferEmpty || outputBufferFull) $ return ()

    when outputBufferFull $ do
      outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize)
      Stream.pushOutputBuffer outFPtr 0 outChunkSize

    if inputBufferEmpty
      then return $ DecompressInputRequired $ \chunk ->
           case chunk of
             _ | S.null chunk -> drainBuffers True
             S.PS inFPtr offset length -> do
                Stream.pushInputBuffer inFPtr offset length
                drainBuffers False
      else drainBuffers False


  drainBuffers :: Bool -> Stream (DecompressStream Stream)
  drainBuffers lastChunk = do

    inputBufferEmpty' <- Stream.inputBufferEmpty
    outputBufferFull' <- Stream.outputBufferFull
    assert(not outputBufferFull'
       && (lastChunk || not inputBufferEmpty')) $ return ()
    -- this invariant guarantees we can always make forward progress or at
    -- least detect premature EOF

    status <- Stream.decompress

    case status of
      Stream.Ok -> do
        outputBufferFull <- Stream.outputBufferFull
        if outputBufferFull
          then do (outFPtr, offset, length) <- Stream.popOutputBuffer
                  let chunk = S.PS outFPtr offset length
                  return $ DecompressOutputAvailable chunk $ do
                    fillBuffers defaultDecompressBufferSize
          else do -- We need to detect if we ran out of input:
                  inputBufferEmpty <- Stream.inputBufferEmpty
                  if inputBufferEmpty && lastChunk
                    then return (DecompressStreamError TruncatedInput)
                    else fillBuffers defaultDecompressBufferSize

      Stream.StreamEnd -> do
        inputBufferEmpty <- Stream.inputBufferEmpty
        if inputBufferEmpty
          then do finish (DecompressStreamEnd S.empty)
          else do (inFPtr, offset, length) <- Stream.popRemainingInputBuffer
                  let inchunk = S.PS inFPtr offset length
                  finish (DecompressStreamEnd inchunk)

      Stream.Error code msg -> case code of
          Stream.DataError -> finish (DecompressStreamError (DataFormatError msg))
          _                -> fail msg

  finish end = do
    outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable
    if outputBufferBytesAvailable > 0
      then do (outFPtr, offset, length) <- Stream.popOutputBuffer
              return (DecompressOutputAvailable (S.PS outFPtr offset length) (return end))
      else return end


------------------------------------------------------------------------------

mkStateST :: ST s (Stream.State s)
mkStateIO :: IO (Stream.State RealWorld)
mkStateST = strictToLazyST Stream.mkState
mkStateIO = stToIO Stream.mkState

runStreamST :: Stream a -> Stream.State s -> ST s (a, Stream.State s)
runStreamIO :: Stream a -> Stream.State RealWorld -> IO (a, Stream.State RealWorld)
runStreamST strm zstate = strictToLazyST (Unsafe.unsafeIOToST noDuplicate >> Stream.runStream strm zstate)
runStreamIO strm zstate = stToIO (Stream.runStream strm zstate)

compressStreamIO :: CompressParams -> CompressStream IO
compressStreamIO params =
    CompressInputRequired {
      compressSupplyInput = \chunk -> do
        zstate <- mkStateIO
        let next = compressStream params
        (strm', zstate') <- runStreamIO (next chunk) zstate
        return (go strm' zstate')
    }
  where
    go :: CompressStream Stream -> Stream.State RealWorld -> CompressStream IO
    go (CompressInputRequired next) zstate =
      CompressInputRequired {
        compressSupplyInput = \chunk -> do
          (strm', zstate') <- runStreamIO (next chunk) zstate
          return (go strm' zstate')
      }

    go (CompressOutputAvailable chunk next) zstate =
      CompressOutputAvailable chunk $ do
        (strm', zstate') <- runStreamIO next zstate
        return (go strm' zstate')

    go CompressStreamEnd _ = CompressStreamEnd


compressStreamST :: CompressParams -> CompressStream (ST s)
compressStreamST params =
    CompressInputRequired {
      compressSupplyInput = \chunk -> do
        zstate <- mkStateST
        let next = compressStream params
        (strm', zstate') <- runStreamST (next chunk) zstate
        return (go strm' zstate')
    }
  where
    go :: CompressStream Stream -> Stream.State s -> CompressStream (ST s)
    go (CompressInputRequired next) zstate =
      CompressInputRequired {
        compressSupplyInput = \chunk -> do
          (strm', zstate') <- runStreamST (next chunk) zstate
          return (go strm' zstate')
      }

    go (CompressOutputAvailable chunk next) zstate =
      CompressOutputAvailable chunk $ do
        (strm', zstate') <- runStreamST next zstate
        return (go strm' zstate')

    go CompressStreamEnd _ = CompressStreamEnd


decompressStreamIO :: DecompressParams -> DecompressStream IO
decompressStreamIO params =
      DecompressInputRequired $ \chunk -> do
        zstate <- mkStateIO
        let next = decompressStream params
        (strm', zstate') <- runStreamIO (next chunk) zstate
        go strm' zstate'
  where
    go :: DecompressStream Stream -> Stream.State RealWorld
       -> IO (DecompressStream IO)
    go (DecompressInputRequired next) zstate =
      return $ DecompressInputRequired $ \chunk -> do
        (strm', zstate') <- runStreamIO (next chunk) zstate
        go strm' zstate'

    go (DecompressOutputAvailable chunk next) zstate =
      return $ DecompressOutputAvailable chunk $ do
        (strm', zstate') <- runStreamIO next zstate
        go strm' zstate'

    go (DecompressStreamEnd unconsumed) zstate =
        finaliseStreamEnd unconsumed zstate

    go (DecompressStreamError err) zstate = finaliseStreamError err zstate

    finaliseStreamEnd unconsumed zstate = do
        _ <- runStreamIO Stream.finalise zstate
        return (DecompressStreamEnd unconsumed)

    finaliseStreamError err zstate = do
        _ <- runStreamIO Stream.finalise zstate
        return (DecompressStreamError err)


decompressStreamST :: DecompressParams -> DecompressStream (ST s)
decompressStreamST params =
      DecompressInputRequired $ \chunk -> do
        zstate <- mkStateST
        let next = decompressStream params
        (strm', zstate') <- runStreamST (next chunk) zstate
        go strm' zstate'
  where
    go :: DecompressStream Stream -> Stream.State s
       -> ST s (DecompressStream (ST s))
    go (DecompressInputRequired next) zstate =
      return $ DecompressInputRequired $ \chunk -> do
        (strm', zstate') <- runStreamST (next chunk) zstate
        go strm' zstate'

    go (DecompressOutputAvailable chunk next) zstate =
      return $ DecompressOutputAvailable chunk $ do
        (strm', zstate') <- runStreamST next zstate
        go strm' zstate'

    go (DecompressStreamEnd unconsumed) zstate =
        finaliseStreamEnd unconsumed zstate

    go (DecompressStreamError err) zstate = finaliseStreamError err zstate

    finaliseStreamEnd unconsumed zstate = do
        _ <- runStreamST Stream.finalise zstate
        return (DecompressStreamEnd unconsumed)

    finaliseStreamError err zstate = do
        _ <- runStreamST Stream.finalise zstate
        return (DecompressStreamError err)