File: Matrix.chs

package info (click to toggle)
haskell-cairo 0.13.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 364 kB
  • sloc: haskell: 2,876; makefile: 47; ansic: 12
file content (138 lines) | stat: -rw-r--r-- 4,266 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
-----------------------------------------------------------------------------
-- |
-- Module      :  Graphics.Rendering.Cairo.Matrix
-- Copyright   :  (c) Paolo Martini 2005
-- License     :  BSD-style (see cairo/COPYRIGHT)
--
-- Maintainer  :  p.martini@neuralnoise.com
-- Stability   :  experimental
-- Portability :  portable
--
-- Matrix math
-----------------------------------------------------------------------------

module Graphics.Rendering.Cairo.Matrix (
    Matrix(Matrix)
  , MatrixPtr
  , identity
  , translate
  , scale
  , rotate
  , transformDistance
  , transformPoint
  , scalarMultiply
  , adjoint
  , invert
  ) where

import Foreign hiding (rotate)
import Foreign.C

-- | Representation of a 2-D affine transformation.
--
--  The Matrix type represents a 2x2 transformation matrix along with a
--  translation vector. @Matrix a1 a2 b1 b2 c1 c2@ describes the
--  transformation of a point with coordinates x,y that is defined by
--
--  >   / x' \  =  / a1 b1 \  / x \  + / c1 \
--  >   \ y' /     \ a2 b2 /  \ y /    \ c2 /
--
--  or
--
--  >   x' =  a1 * x + b1 * y + c1
--  >   y' =  a2 * x + b2 * y + c2

data Matrix = Matrix { xx :: !Double, yx :: !Double,
                       xy :: !Double, yy :: !Double,
                       x0 :: !Double, y0 :: !Double }
  deriving (Show, Eq)

{#pointer *cairo_matrix_t as MatrixPtr -> Matrix#}

instance Storable Matrix where
  sizeOf _ = {#sizeof cairo_matrix_t#}
  alignment _ = alignment (undefined :: CDouble)
  peek p = do
    xx <- {#get cairo_matrix_t->xx#} p
    yx <- {#get cairo_matrix_t->yx#} p
    xy <- {#get cairo_matrix_t->xy#} p
    yy <- {#get cairo_matrix_t->yy#} p
    x0 <- {#get cairo_matrix_t->x0#} p
    y0 <- {#get cairo_matrix_t->y0#} p
    return $ Matrix (realToFrac xx) (realToFrac yx)
                    (realToFrac xy) (realToFrac yy)
                    (realToFrac x0) (realToFrac y0)

  poke p (Matrix xx yx xy yy x0 y0) = do
    {#set cairo_matrix_t->xx#} p (realToFrac xx)
    {#set cairo_matrix_t->yx#} p (realToFrac yx)
    {#set cairo_matrix_t->xy#} p (realToFrac xy)
    {#set cairo_matrix_t->yy#} p (realToFrac yy)
    {#set cairo_matrix_t->x0#} p (realToFrac x0)
    {#set cairo_matrix_t->y0#} p (realToFrac y0)
    return ()

instance Num Matrix where
  (*) (Matrix xx yx xy yy x0 y0) (Matrix xx' yx' xy' yy' x0' y0') =
    Matrix (xx * xx' + yx * xy')
           (xx * yx' + yx * yy')
           (xy * xx' + yy * xy')
           (xy * yx' + yy * yy')
           (x0 * xx' + y0 * xy' + x0')
           (x0 * yx' + y0 * yy' + y0')

  (+) = pointwise2 (+)
  (-) = pointwise2 (-)

  negate = pointwise negate
  abs    = pointwise abs
  signum = pointwise signum

  -- this definition of fromInteger means that 2*m = scale 2 m
  -- and it means 1 = identity
  fromInteger n = Matrix (fromInteger n) 0 0 (fromInteger n) 0 0

{-# INLINE pointwise #-}
pointwise f (Matrix xx yx xy yy x0 y0) =
  Matrix (f xx) (f yx) (f xy) (f yy) (f x0) (f y0)

{-# INLINE pointwise2 #-}
pointwise2 f (Matrix xx yx xy yy x0 y0) (Matrix xx' yx' xy' yy' x0' y0') =
  Matrix (f xx xx') (f yx yx') (f xy xy') (f yy yy') (f x0 x0') (f y0 y0')

identity :: Matrix
identity = Matrix 1 0 0 1 0 0

translate :: Double -> Double -> Matrix -> Matrix
translate tx ty m = m * (Matrix 1 0 0 1 tx ty)

scale :: Double -> Double -> Matrix -> Matrix
scale sx sy m = m * (Matrix sx 0 0 sy 0 0)

rotate :: Double -> Matrix -> Matrix
rotate r m = m * (Matrix c s (-s) c 0 0)
  where s = sin r
        c = cos r

transformDistance :: Matrix -> (Double,Double) -> (Double,Double)
transformDistance (Matrix xx yx xy yy _ _) (dx,dy) =
  newX `seq` newY `seq` (newX,newY)
  where newX = xx * dx + xy * dy
        newY = yx * dx + yy * dy

transformPoint :: Matrix -> (Double,Double) -> (Double,Double)
transformPoint (Matrix xx yx xy yy x0 y0) (dx,dy) =
  newX `seq` newY `seq` (newX,newY)
  where newX = xx * dx + xy * dy + x0
        newY = yx * dx + yy * dy + y0

scalarMultiply :: Double -> Matrix -> Matrix
scalarMultiply scalar = pointwise (*scalar)

adjoint :: Matrix -> Matrix
adjoint (Matrix a b c d tx ty) =
  Matrix d (-b) (-c) a (c*ty - d*tx) (b*tx - a*ty)

invert :: Matrix -> Matrix
invert m@(Matrix xx yx xy yy _ _) = scalarMultiply (recip det) $ adjoint m
  where det = xx*yy - yx*xy