File: Floating.hs

package info (click to toggle)
haskell-chart 1.3-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 336 kB
  • ctags: 1
  • sloc: haskell: 3,916; makefile: 3
file content (246 lines) | stat: -rw-r--r-- 8,517 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
-----------------------------------------------------------------------------
-- |
-- Module      :  Graphics.Rendering.Chart.Axis.Floating
-- Copyright   :  (c) Tim Docker 2010, 2014
-- License     :  BSD-style (see chart/COPYRIGHT)
--
-- Calculate and render floating value axes
-- including doubles with linear, log, and percentage scaling.
--

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TemplateHaskell #-}

module Graphics.Rendering.Chart.Axis.Floating(
    Percent(..),
    LinearAxisParams(..),
    LogValue(..),
    LogAxisParams(..),
    scaledAxis,
    autoScaledAxis,
    autoScaledLogAxis,
    autoSteps,

    la_labelf,
    la_nLabels,
    la_nTicks,

    loga_labelf
) where

import Data.List(minimumBy)
import Data.Ord (comparing)
import Data.Default.Class
import Numeric (showFFloat)

import Control.Lens
import Graphics.Rendering.Chart.Geometry
import Graphics.Rendering.Chart.Utils
import Graphics.Rendering.Chart.Axis.Types

-- Note: the following code uses explicit Integer types
-- to avoid -Wall 'defaulting to Integer' messages.

instance PlotValue Double where
    toValue  = id
    fromValue= id
    autoAxis = autoScaledAxis def

-- | A wrapper class for doubles used to indicate they are to
-- be plotted against a percentage axis.
newtype Percent = Percent {unPercent :: Double}
    deriving (Eq,Ord,Num,Real,Fractional,RealFrac,Floating,RealFloat)

instance Show Percent where
    show (Percent d) = showD (d*100) ++ "%"

instance PlotValue Percent where
    toValue  = unPercent
    fromValue= Percent
    autoAxis = autoScaledAxis def {-_la_labelf=-}

-- | A wrapper class for doubles used to indicate they are to
-- be plotted against a log axis.
newtype LogValue = LogValue Double
    deriving (Eq, Ord, Num, Real, Fractional, RealFrac, Floating, RealFloat)

instance Show LogValue where
    show (LogValue x) = show x

instance PlotValue LogValue where
    toValue (LogValue x) = log x
    fromValue d          = LogValue (exp d)
    autoAxis             = autoScaledLogAxis def

showD :: (RealFloat d) => d -> String
showD x = case reverse $ showFFloat Nothing x "" of
            '0':'.':r -> reverse r
            r         -> reverse r

data LinearAxisParams a = LinearAxisParams {
    -- | The function used to show the axes labels.
    _la_labelf  :: a -> String,

    -- | The target number of labels to be shown.
    _la_nLabels :: Int,

    -- | The target number of ticks to be shown.
    _la_nTicks  :: Int
}

instance (Show a, RealFloat a) => Default (LinearAxisParams a) where
  def = LinearAxisParams 
    { _la_labelf    = showD
    , _la_nLabels   = 5
    , _la_nTicks    = 50
    }

-- | Generate a linear axis with the specified bounds
scaledAxis :: RealFloat a => LinearAxisParams a -> (a,a) -> AxisFn a
scaledAxis lap rs@(minV,maxV) ps0 = makeAxis' realToFrac realToFrac
                                         (_la_labelf lap) (labelvs,tickvs,gridvs)
  where
    ps        = filter isValidNumber ps0
    range []  = (0,1)
    range _   | minV == maxV = if minV==0 then (-1,1) else
                               let d = abs (minV * 0.01) in (minV-d,maxV+d)
              | otherwise    = rs
    labelvs   = map fromRational $ steps (fromIntegral (_la_nLabels lap)) r
    tickvs    = map fromRational $ steps (fromIntegral (_la_nTicks lap))
                                         (minimum labelvs,maximum labelvs)
    gridvs    = labelvs
    r         = range ps

-- | Generate a linear axis automatically, scaled appropriately for the
-- input data.
autoScaledAxis :: RealFloat a => LinearAxisParams a -> AxisFn a
autoScaledAxis lap ps0 = scaledAxis lap rs ps0
  where
    rs = (minimum ps0,maximum ps0)

steps :: RealFloat a => a -> (a,a) -> [Rational]
steps nSteps rs@(minV,maxV) = map ((s*) . fromIntegral) [min' .. max']
  where
    s    = chooseStep nSteps rs
    min' :: Integer
    min' = floor   $ realToFrac minV / s
    max' = ceiling $ realToFrac maxV / s

chooseStep :: RealFloat a => a -> (a,a) -> Rational
chooseStep nsteps (x1,x2) = minimumBy (comparing proximity) stepVals
  where
    delta = x2 - x1
    mult  = 10 ^^ ((floor $ log10 $ delta / nsteps)::Integer)
    stepVals = map (mult*) [0.1,0.2,0.25,0.5,1.0,2.0,2.5,5.0,10,20,25,50]
    proximity x = abs $ delta / realToFrac x - nsteps

-- | Given a target number of values, and a list of input points,
--   find evenly spaced values from the set {1*X, 2*X, 2.5*X, 5*X} (where
--   X is some power of ten) that evenly cover the input points.
autoSteps :: Int -> [Double] -> [Double]
autoSteps nSteps vs = map fromRational $ steps (fromIntegral nSteps) r
  where
    range []  = (0,1)
    range _   | minV == maxV = (minV-0.5,minV+0.5)
              | otherwise    = rs
    rs@(minV,maxV) = (minimum ps,maximum ps)
    ps        = filter isValidNumber vs
    r         = range ps

----------------------------------------------------------------------

instance (Show a, RealFloat a) => Default (LogAxisParams a) where
  def = LogAxisParams 
    { _loga_labelf = showD
    }

-- | Generate a log axis automatically, scaled appropriate for the
-- input data.
autoScaledLogAxis :: RealFloat a => LogAxisParams a -> AxisFn a
autoScaledLogAxis lap ps0 =
    makeAxis' (realToFrac . log) (realToFrac . exp)
              (_loga_labelf lap) (wrap rlabelvs, wrap rtickvs, wrap rgridvs)
        where
          ps        = filter (\x -> isValidNumber x && 0 < x) ps0
          (minV,maxV) = (minimum ps,maximum ps)
          wrap      = map fromRational
          range []  = (3,30)
          range _   | minV == maxV = (realToFrac $ minV/3, realToFrac $ maxV*3)
                    | otherwise    = (realToFrac $ minV,   realToFrac $ maxV)
          (rlabelvs, rtickvs, rgridvs) = logTicks (range ps)


data LogAxisParams a = LogAxisParams {
    -- | The function used to show the axes labels.
    _loga_labelf :: a -> String
}

{-
 Rules: Do not subdivide between powers of 10 until all powers of 10
          get a major ticks.
        Do not subdivide between powers of ten as [1,2,4,6,8,10] when
          5 gets a major ticks
          (ie the major ticks need to be a subset of the minor tick)
-}
logTicks :: Range -> ([Rational],[Rational],[Rational])
logTicks (low,high) = (major,minor,major)
 where
  pf :: RealFrac a => a -> (Integer, a)
  pf = properFraction

  -- frac :: (RealFrac a, Integral b) => a -> (b, a)
  frac :: (RealFrac a) => a -> (Integer, a)
  frac x | 0 <= b    = (a,b)
         | otherwise = (a-1,b+1)
    where
      (a,b) = properFraction x

  ratio      = high/low
  lower a l  = let (i,r) = frac (log10 a) in
               maximum (1:filter (\x -> log10 (fromRational x) <= r) l)*10^^i
  upper a l  = let (i,r) = pf (log10 a) in
               minimum (10:filter (\x -> r <= log10 (fromRational x)) l)*10^^i
               
  powers           :: (Double,Double) -> [Rational] -> [Rational]
  powers (x,y) l    = [ a*10^^p | p <- [(floor (log10 x))..(ceiling (log10 y))] :: [Integer]
                                , a <- l ]
  midselection r l  = filter (inRange r l) (powers r l)
  inRange (a,b) l x = (lower a l <= x) && (x <= upper b l)
  
  logRange = (log10 low, log10 high)
  
  roundPow x = 10^^(round x :: Integer)
  
  major | 17.5 < log10 ratio = map roundPow $
                               steps (min 5 (log10 ratio)) logRange
        | 12 < log10 ratio   = map roundPow $
                               steps (log10 ratio / 5) logRange
        | 6 < log10 ratio    = map roundPow $
                               steps (log10 ratio / 2) logRange
        | 3 < log10 ratio    = midselection (low,high) [1,10]
        | 20 < ratio         = midselection (low,high) [1,5,10]
        | 6 < ratio          = midselection (low,high) [1,2,4,6,8,10]
        | 3 < ratio          = midselection (low,high) [1..10]
        | otherwise          = steps 5 (low,high)

  (l',h')   = (minimum major, maximum major)
  (dl',dh') = (fromRational l', fromRational h')
  ratio' :: Double
  ratio' = fromRational (h'/l')
  filterX = filter (\x -> l'<=x && x <=h') . powers (dl',dh') 
  
  minor | 50 < log10 ratio' = map roundPow $
                              steps 50 (log10 dl', log10 dh')
        | 6 < log10 ratio'  = filterX [1,10]
        | 3 < log10 ratio'  = filterX [1,5,10]
        | 6 < ratio'        = filterX [1..10]
        | 3 < ratio'        = filterX [1,1.2..10]
        | otherwise         = steps 50 (dl', dh')


log10 :: (Floating a) => a -> a
log10 = logBase 10

$( makeLenses ''LinearAxisParams )
$( makeLenses ''LogAxisParams )