1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
-----------------------------------------------------------------------------
-- |
-- Module : Graphics.Rendering.Chart.Axis.Floating
-- Copyright : (c) Tim Docker 2010, 2014
-- License : BSD-style (see chart/COPYRIGHT)
--
-- Calculate and render floating value axes
-- including doubles with linear, log, and percentage scaling.
--
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
module Graphics.Rendering.Chart.Axis.Floating(
Percent(..),
LinearAxisParams(..),
LogValue(..),
LogAxisParams(..),
scaledAxis,
autoScaledAxis,
autoScaledLogAxis,
autoSteps,
la_labelf,
la_nLabels,
la_nTicks,
loga_labelf
) where
import Data.List(minimumBy)
import Data.Ord (comparing)
import Data.Default.Class
import Numeric (showFFloat)
import Control.Lens
import Graphics.Rendering.Chart.Geometry
import Graphics.Rendering.Chart.Utils
import Graphics.Rendering.Chart.Axis.Types
-- Note: the following code uses explicit Integer types
-- to avoid -Wall 'defaulting to Integer' messages.
instance PlotValue Double where
toValue = id
fromValue= id
autoAxis = autoScaledAxis def
-- | A wrapper class for doubles used to indicate they are to
-- be plotted against a percentage axis.
newtype Percent = Percent {unPercent :: Double}
deriving (Eq,Ord,Num,Real,Fractional,RealFrac,Floating,RealFloat)
instance Show Percent where
show (Percent d) = showD (d*100) ++ "%"
instance PlotValue Percent where
toValue = unPercent
fromValue= Percent
autoAxis = autoScaledAxis def {-_la_labelf=-}
-- | A wrapper class for doubles used to indicate they are to
-- be plotted against a log axis.
newtype LogValue = LogValue Double
deriving (Eq, Ord, Num, Real, Fractional, RealFrac, Floating, RealFloat)
instance Show LogValue where
show (LogValue x) = show x
instance PlotValue LogValue where
toValue (LogValue x) = log x
fromValue d = LogValue (exp d)
autoAxis = autoScaledLogAxis def
showD :: (RealFloat d) => d -> String
showD x = case reverse $ showFFloat Nothing x "" of
'0':'.':r -> reverse r
r -> reverse r
data LinearAxisParams a = LinearAxisParams {
-- | The function used to show the axes labels.
_la_labelf :: a -> String,
-- | The target number of labels to be shown.
_la_nLabels :: Int,
-- | The target number of ticks to be shown.
_la_nTicks :: Int
}
instance (Show a, RealFloat a) => Default (LinearAxisParams a) where
def = LinearAxisParams
{ _la_labelf = showD
, _la_nLabels = 5
, _la_nTicks = 50
}
-- | Generate a linear axis with the specified bounds
scaledAxis :: RealFloat a => LinearAxisParams a -> (a,a) -> AxisFn a
scaledAxis lap rs@(minV,maxV) ps0 = makeAxis' realToFrac realToFrac
(_la_labelf lap) (labelvs,tickvs,gridvs)
where
ps = filter isValidNumber ps0
range [] = (0,1)
range _ | minV == maxV = if minV==0 then (-1,1) else
let d = abs (minV * 0.01) in (minV-d,maxV+d)
| otherwise = rs
labelvs = map fromRational $ steps (fromIntegral (_la_nLabels lap)) r
tickvs = map fromRational $ steps (fromIntegral (_la_nTicks lap))
(minimum labelvs,maximum labelvs)
gridvs = labelvs
r = range ps
-- | Generate a linear axis automatically, scaled appropriately for the
-- input data.
autoScaledAxis :: RealFloat a => LinearAxisParams a -> AxisFn a
autoScaledAxis lap ps0 = scaledAxis lap rs ps0
where
rs = (minimum ps0,maximum ps0)
steps :: RealFloat a => a -> (a,a) -> [Rational]
steps nSteps rs@(minV,maxV) = map ((s*) . fromIntegral) [min' .. max']
where
s = chooseStep nSteps rs
min' :: Integer
min' = floor $ realToFrac minV / s
max' = ceiling $ realToFrac maxV / s
chooseStep :: RealFloat a => a -> (a,a) -> Rational
chooseStep nsteps (x1,x2) = minimumBy (comparing proximity) stepVals
where
delta = x2 - x1
mult = 10 ^^ ((floor $ log10 $ delta / nsteps)::Integer)
stepVals = map (mult*) [0.1,0.2,0.25,0.5,1.0,2.0,2.5,5.0,10,20,25,50]
proximity x = abs $ delta / realToFrac x - nsteps
-- | Given a target number of values, and a list of input points,
-- find evenly spaced values from the set {1*X, 2*X, 2.5*X, 5*X} (where
-- X is some power of ten) that evenly cover the input points.
autoSteps :: Int -> [Double] -> [Double]
autoSteps nSteps vs = map fromRational $ steps (fromIntegral nSteps) r
where
range [] = (0,1)
range _ | minV == maxV = (minV-0.5,minV+0.5)
| otherwise = rs
rs@(minV,maxV) = (minimum ps,maximum ps)
ps = filter isValidNumber vs
r = range ps
----------------------------------------------------------------------
instance (Show a, RealFloat a) => Default (LogAxisParams a) where
def = LogAxisParams
{ _loga_labelf = showD
}
-- | Generate a log axis automatically, scaled appropriate for the
-- input data.
autoScaledLogAxis :: RealFloat a => LogAxisParams a -> AxisFn a
autoScaledLogAxis lap ps0 =
makeAxis' (realToFrac . log) (realToFrac . exp)
(_loga_labelf lap) (wrap rlabelvs, wrap rtickvs, wrap rgridvs)
where
ps = filter (\x -> isValidNumber x && 0 < x) ps0
(minV,maxV) = (minimum ps,maximum ps)
wrap = map fromRational
range [] = (3,30)
range _ | minV == maxV = (realToFrac $ minV/3, realToFrac $ maxV*3)
| otherwise = (realToFrac $ minV, realToFrac $ maxV)
(rlabelvs, rtickvs, rgridvs) = logTicks (range ps)
data LogAxisParams a = LogAxisParams {
-- | The function used to show the axes labels.
_loga_labelf :: a -> String
}
{-
Rules: Do not subdivide between powers of 10 until all powers of 10
get a major ticks.
Do not subdivide between powers of ten as [1,2,4,6,8,10] when
5 gets a major ticks
(ie the major ticks need to be a subset of the minor tick)
-}
logTicks :: Range -> ([Rational],[Rational],[Rational])
logTicks (low,high) = (major,minor,major)
where
pf :: RealFrac a => a -> (Integer, a)
pf = properFraction
-- frac :: (RealFrac a, Integral b) => a -> (b, a)
frac :: (RealFrac a) => a -> (Integer, a)
frac x | 0 <= b = (a,b)
| otherwise = (a-1,b+1)
where
(a,b) = properFraction x
ratio = high/low
lower a l = let (i,r) = frac (log10 a) in
maximum (1:filter (\x -> log10 (fromRational x) <= r) l)*10^^i
upper a l = let (i,r) = pf (log10 a) in
minimum (10:filter (\x -> r <= log10 (fromRational x)) l)*10^^i
powers :: (Double,Double) -> [Rational] -> [Rational]
powers (x,y) l = [ a*10^^p | p <- [(floor (log10 x))..(ceiling (log10 y))] :: [Integer]
, a <- l ]
midselection r l = filter (inRange r l) (powers r l)
inRange (a,b) l x = (lower a l <= x) && (x <= upper b l)
logRange = (log10 low, log10 high)
roundPow x = 10^^(round x :: Integer)
major | 17.5 < log10 ratio = map roundPow $
steps (min 5 (log10 ratio)) logRange
| 12 < log10 ratio = map roundPow $
steps (log10 ratio / 5) logRange
| 6 < log10 ratio = map roundPow $
steps (log10 ratio / 2) logRange
| 3 < log10 ratio = midselection (low,high) [1,10]
| 20 < ratio = midselection (low,high) [1,5,10]
| 6 < ratio = midselection (low,high) [1,2,4,6,8,10]
| 3 < ratio = midselection (low,high) [1..10]
| otherwise = steps 5 (low,high)
(l',h') = (minimum major, maximum major)
(dl',dh') = (fromRational l', fromRational h')
ratio' :: Double
ratio' = fromRational (h'/l')
filterX = filter (\x -> l'<=x && x <=h') . powers (dl',dh')
minor | 50 < log10 ratio' = map roundPow $
steps 50 (log10 dl', log10 dh')
| 6 < log10 ratio' = filterX [1,10]
| 3 < log10 ratio' = filterX [1,5,10]
| 6 < ratio' = filterX [1..10]
| 3 < ratio' = filterX [1,1.2..10]
| otherwise = steps 50 (dl', dh')
log10 :: (Floating a) => a -> a
log10 = logBase 10
$( makeLenses ''LinearAxisParams )
$( makeLenses ''LogAxisParams )
|