File: Combinators.hs

package info (click to toggle)
haskell-conduit-combinators 0.2.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 188 kB
  • ctags: 2
  • sloc: haskell: 2,509; makefile: 6
file content (1845 lines) | stat: -rw-r--r-- 52,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses     #-}
{-# LANGUAGE NoImplicitPrelude         #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE BangPatterns #-}
-- | This module is meant as a replacement for Data.Conduit.List.
-- That module follows a naming scheme which was originally inspired
-- by its enumerator roots. This module is meant to introduce a naming
-- scheme which encourages conduit best practices.
--
-- There are two versions of functions in this module. Those with a trailing
-- E work in the individual elements of a chunk of data, e.g., the bytes of
-- a ByteString, the Chars of a Text, or the Ints of a Vector Int. Those
-- without a trailing E work on unchunked streams.
--
-- FIXME: discuss overall naming, usage of mono-traversable, etc
--
-- Mention take (Conduit) vs drop (Consumer)
module Data.Conduit.Combinators
    ( -- * Producers
      -- ** Pure
      yieldMany
    , unfold
    , enumFromTo
    , iterate
    , repeat
    , replicate
    , sourceLazy

      -- ** Monadic
    , repeatM
    , repeatWhileM
    , replicateM

      -- ** I\/O
    , sourceFile
    , sourceHandle
    , sourceIOHandle
    , stdin

      -- ** Random numbers
    , sourceRandom
    , sourceRandomN
    , sourceRandomGen
    , sourceRandomNGen

      -- ** Filesystem
    , sourceDirectory
    , sourceDirectoryDeep

      -- * Consumers
      -- ** Pure
    , drop
    , dropE
    , dropWhile
    , dropWhileE
    , fold
    , foldE
    , foldl
    , foldlE
    , foldMap
    , foldMapE
    , all
    , allE
    , any
    , anyE
    , and
    , andE
    , or
    , orE
    , elem
    , elemE
    , notElem
    , notElemE
    , sinkLazy
    , sinkList
    , sinkVector
    , sinkVectorN
    , sinkBuilder
    , sinkLazyBuilder
    , sinkNull
    , awaitNonNull
    , headE
    , peek
    , peekE
    , last
    , lastE
    , length
    , lengthE
    , lengthIf
    , lengthIfE
    , maximum
    , maximumE
    , minimum
    , minimumE
    , null
    , nullE
    , sum
    , sumE
    , product
    , productE
    , find

      -- ** Monadic
    , mapM_
    , mapM_E
    , foldM
    , foldME
    , foldMapM
    , foldMapME

      -- ** I\/O
    , sinkFile
    , sinkHandle
    , sinkIOHandle
    , print
    , stdout
    , stderr

      -- * Transformers
      -- ** Pure
    , map
    , mapE
    , omapE
    , concatMap
    , concatMapE
    , take
    , takeE
    , takeWhile
    , takeWhileE
    , takeExactly
    , takeExactlyE
    , concat
    , filter
    , filterE
    , mapWhile
    , conduitVector
    , scanl
    , concatMapAccum
    , intersperse
    , slidingWindow

      -- *** Binary base encoding
    , encodeBase64
    , decodeBase64
    , encodeBase64URL
    , decodeBase64URL
    , encodeBase16
    , decodeBase16

      -- ** Monadic
    , mapM
    , mapME
    , omapME
    , concatMapM
    , filterM
    , filterME
    , iterM
    , scanlM
    , concatMapAccumM

      -- ** Textual
    , encodeUtf8
    , decodeUtf8
    , decodeUtf8Lenient
    , line
    , lineAscii
    , unlines
    , unlinesAscii
    , linesUnbounded
    , linesUnboundedAscii

      -- * Special
    , vectorBuilder
    ) where

-- BEGIN IMPORTS

import Data.Builder
import qualified Data.NonNull as NonNull
import qualified Data.Traversable
import qualified Data.ByteString as S
import qualified Data.ByteString.Base16 as B16
import qualified Data.ByteString.Base64 as B64
import qualified Data.ByteString.Base64.URL as B64U
import           Control.Applicative         ((<$>))
import           Control.Exception           (assert)
import           Control.Category            (Category (..))
import           Control.Monad               (unless, when, (>=>), liftM, forever)
import           Control.Monad.Base          (MonadBase (liftBase))
import           Control.Monad.IO.Class      (MonadIO (..))
import           Control.Monad.Primitive     (PrimMonad, PrimState)
import           Control.Monad.Trans.Class   (lift)
import           Control.Monad.Trans.Resource (MonadResource, MonadThrow)
import           Data.Conduit
import           Data.Conduit.Internal       (ConduitM (..), Pipe (..))
import qualified Data.Conduit.List           as CL
import           Data.IOData
import           Data.Monoid                 (Monoid (..))
import           Data.MonoTraversable
import qualified Data.Sequences              as Seq
import           Data.Sequences.Lazy
import qualified Data.Vector.Generic         as V
import qualified Data.Vector.Generic.Mutable as VM
import           Data.Void                   (absurd)
import qualified Filesystem                  as F
import           Filesystem.Path             (FilePath, (</>))
import           Filesystem.Path.CurrentOS   (encodeString, decodeString)
import           Prelude                     (Bool (..), Eq (..), Int,
                                              Maybe (..), Monad (..), Num (..),
                                              Ord (..), fromIntegral, maybe,
                                              ($), Functor (..), Enum, seq, Show, Char, (||),
                                              mod, otherwise, Either (..),
                                              ($!), succ)
import Data.Word (Word8)
import qualified Prelude
import           System.IO                   (Handle)
import qualified System.IO                   as SIO
import qualified Data.Textual.Encoding as DTE
import qualified Data.Conduit.Text as CT
import Data.ByteString (ByteString)
import Data.Text (Text)
import qualified System.Random.MWC as MWC
import Data.Conduit.Combinators.Internal
import qualified System.PosixCompat.Files as PosixC
import           Data.Primitive.MutVar       (MutVar, newMutVar, readMutVar,
                                              writeMutVar)

#ifndef WINDOWS
import qualified System.Posix.Directory as Dir
#endif

#if MIN_VERSION_conduit(1,1,0)
import qualified Data.Conduit.Filesystem as CF
#endif

-- END IMPORTS

-- | Yield each of the values contained by the given @MonoFoldable@.
--
-- This will work on many data structures, including lists, @ByteString@s, and @Vector@s.
--
-- Since 1.0.0
yieldMany :: (Monad m, MonoFoldable mono)
          => mono
          -> Producer m (Element mono)
yieldMany = ofoldMap yield
{-# INLINE yieldMany #-}

-- | Generate a producer from a seed value.
--
-- Since 1.0.0
unfold :: Monad m
       => (b -> Maybe (a, b))
       -> b
       -> Producer m a
unfold = CL.unfold
{-# INLINE unfold #-}

-- | Enumerate from a value to a final value, inclusive, via 'succ'.
--
-- This is generally more efficient than using @Prelude@\'s @enumFromTo@ and
-- combining with @sourceList@ since this avoids any intermediate data
-- structures.
--
-- Since 1.0.0
enumFromTo :: (Monad m, Enum a, Eq a) => a -> a -> Producer m a
enumFromTo = CL.enumFromTo

-- | Produces an infinite stream of repeated applications of f to x.
--
-- Since 1.0.0
iterate :: Monad m => (a -> a) -> a -> Producer m a
iterate = CL.iterate
{-# INLINE iterate #-}

-- | Produce an infinite stream consisting entirely of the given value.
--
-- Since 1.0.0
repeat :: Monad m => a -> Producer m a
repeat = iterate id
{-# INLINE repeat #-}

-- | Produce a finite stream consisting of n copies of the given value.
--
-- Since 1.0.0
replicate :: Monad m
          => Int
          -> a
          -> Producer m a
replicate count0 a =
    loop count0
  where
    loop count = if count <= 0
        then return ()
        else yield a >> loop (count - 1)
{-# INLINE replicate #-}

-- | Generate a producer by yielding each of the strict chunks in a @LazySequence@.
--
-- For more information, see 'toChunks'.
--
-- Since 1.0.0
sourceLazy :: (Monad m, LazySequence lazy strict)
           => lazy
           -> Producer m strict
sourceLazy = yieldMany . toChunks
{-# INLINE sourceLazy #-}

-- | Repeatedly run the given action and yield all values it produces.
--
-- Since 1.0.0
repeatM :: Monad m
        => m a
        -> Producer m a
repeatM m = forever $ lift m >>= yield
{-# INLINE repeatM #-}

-- | Repeatedly run the given action and yield all values it produces, until
-- the provided predicate returns @False@.
--
-- Since 1.0.0
repeatWhileM :: Monad m
             => m a
             -> (a -> Bool)
             -> Producer m a
repeatWhileM m f =
    loop
  where
    loop = do
        x <- lift m
        when (f x) $ yield x >> loop

-- | Perform the given action n times, yielding each result.
--
-- Since 1.0.0
replicateM :: Monad m
           => Int
           -> m a
           -> Producer m a
replicateM count0 m =
    loop count0
  where
    loop count = if count <= 0
        then return ()
        else lift m >>= yield >> loop (count - 1)
{-# INLINE replicateM #-}

-- | Read all data from the given file.
--
-- This function automatically opens and closes the file handle, and ensures
-- exception safety via @MonadResource. It works for all instances of @IOData@,
-- including @ByteString@ and @Text@.
--
-- Since 1.0.0
sourceFile :: (MonadResource m, IOData a) => FilePath -> Producer m a
sourceFile fp = sourceIOHandle (F.openFile fp SIO.ReadMode)
{-# INLINE sourceFile #-}

-- | Read all data from the given @Handle@.
--
-- Does not close the @Handle@ at any point.
--
-- Since 1.0.0
sourceHandle :: (MonadIO m, IOData a) => Handle -> Producer m a
sourceHandle h =
    loop
  where
    loop = do
        x <- liftIO (hGetChunk h)
        if onull x
            then return ()
            else yield x >> loop
{-# INLINEABLE sourceHandle #-}

-- | Open a @Handle@ using the given function and stream data from it.
--
-- Automatically closes the file at completion.
--
-- Since 1.0.0
sourceIOHandle :: (MonadResource m, IOData a) => SIO.IO Handle -> Producer m a
sourceIOHandle alloc = bracketP alloc SIO.hClose sourceHandle
{-# INLINE sourceIOHandle #-}

-- | @sourceHandle@ applied to @stdin@.
--
-- Since 1.0.0
stdin :: (MonadIO m, IOData a) => Producer m a
stdin = sourceHandle SIO.stdin

-- | Create an infinite stream of random values, seeding from the system random
-- number.
--
-- Since 1.0.0
sourceRandom :: (MWC.Variate a, MonadIO m) => Producer m a
sourceRandom = initRepeat (liftIO MWC.createSystemRandom) (liftIO . MWC.uniform)
{-# INLINE sourceRandom #-}

-- | Create a stream of random values of length n, seeding from the system
-- random number.
--
-- Since 1.0.0
sourceRandomN :: (MWC.Variate a, MonadIO m)
              => Int -- ^ count
              -> Producer m a
sourceRandomN = initReplicate (liftIO MWC.createSystemRandom) (liftIO . MWC.uniform)
{-# INLINE [0] sourceRandomN #-}

-- | Create an infinite stream of random values, using the given random number
-- generator.
--
-- Since 1.0.0
sourceRandomGen :: (MWC.Variate a, MonadBase base m, PrimMonad base)
                => MWC.Gen (PrimState base)
                -> Producer m a
sourceRandomGen gen = initRepeat (return gen) (liftBase . MWC.uniform)
{-# INLINE sourceRandomGen #-}

-- | Create a stream of random values of length n, seeding from the system
-- random number.
--
-- Since 1.0.0
sourceRandomNGen :: (MWC.Variate a, MonadBase base m, PrimMonad base)
                 => MWC.Gen (PrimState base)
                 -> Int -- ^ count
                 -> Producer m a
sourceRandomNGen gen = initReplicate (return gen) (liftBase . MWC.uniform)
{-# INLINE sourceRandomNGen #-}

-- | Stream the contents of the given directory, without traversing deeply.
--
-- This function will return /all/ of the contents of the directory, whether
-- they be files, directories, etc.
--
-- Note that the generated filepaths will be the complete path, not just the
-- filename. In other words, if you have a directory @foo@ containing files
-- @bar@ and @baz@, and you use @sourceDirectory@ on @foo@, the results will be
-- @foo/bar@ and @foo/baz@.
--
-- Since 1.0.0
sourceDirectory :: MonadResource m => FilePath -> Producer m FilePath
#if MIN_VERSION_conduit(1,1,0)
sourceDirectory = mapOutput decodeString . CF.sourceDirectory . encodeString
#else

#ifdef WINDOWS
sourceDirectory = (liftIO . F.listDirectory) >=> yieldMany
#else
sourceDirectory dir =
    bracketP (Dir.openDirStream $ encodeString dir) Dir.closeDirStream loop
  where
    loop ds = do
        fp <- liftIO $ Dir.readDirStream ds
        unless (Prelude.null fp) $ do
            unless (fp == "." || fp == "..")
                $ yield $ dir </> decodeString fp
            loop ds
#endif

#endif

-- | Deeply stream the contents of the given directory.
--
-- This works the same as @sourceDirectory@, but will not return directories at
-- all. This function also takes an extra parameter to indicate whether
-- symlinks will be followed.
--
-- Since 1.0.0
sourceDirectoryDeep :: MonadResource m
                    => Bool -- ^ Follow directory symlinks
                    -> FilePath -- ^ Root directory
                    -> Producer m FilePath
#if MIN_VERSION_conduit(1,1,0)
sourceDirectoryDeep follow = mapOutput decodeString . CF.sourceDirectoryDeep follow . encodeString
#else

sourceDirectoryDeep followSymlinks =
    start
  where
    start :: MonadResource m => FilePath -> Producer m FilePath
    start dir = sourceDirectory dir =$= awaitForever go

    go :: MonadResource m => FilePath -> Producer m FilePath
    go fp = do
        isFile' <- liftIO $ F.isFile fp
        if isFile'
            then yield fp
            else do
                follow' <- liftIO $ follow fp
                when follow' (start fp)

    follow :: FilePath -> Prelude.IO Bool
    follow p = do
        let path = encodeString p
        stat <- if followSymlinks
            then PosixC.getFileStatus path
            else PosixC.getSymbolicLinkStatus path
        return (PosixC.isDirectory stat)
#endif

-- | Ignore a certain number of values in the stream.
--
-- Since 1.0.0
drop :: Monad m
     => Int
     -> Consumer a m ()
drop =
    loop
  where
    loop i | i <= 0 = return ()
    loop count = await >>= maybe (return ()) (\_ -> loop (count - 1))
{-# INLINE drop #-}

-- | Drop a certain number of elements from a chunked stream.
--
-- Since 1.0.0
dropE :: (Monad m, Seq.IsSequence seq)
      => Seq.Index seq
      -> Consumer seq m ()
dropE =
    loop
  where
    loop i = if i <= 0
        then return ()
        else await >>= maybe (return ()) (go i)

    go i seq = do
        unless (onull y) $ leftover y
        loop i'
      where
        (x, y) = Seq.splitAt i seq
        i' = i - fromIntegral (olength x)
{-# INLINEABLE dropE #-}

-- | Drop all values which match the given predicate.
--
-- Since 1.0.0
dropWhile :: Monad m
          => (a -> Bool)
          -> Consumer a m ()
dropWhile f =
    loop
  where
    loop = await >>= maybe (return ()) go
    go x = if f x then loop else leftover x
{-# INLINE dropWhile #-}

-- | Drop all elements in the chunked stream which match the given predicate.
--
-- Since 1.0.0
dropWhileE :: (Monad m, Seq.IsSequence seq)
           => (Element seq -> Bool)
           -> Consumer seq m ()
dropWhileE f =
    loop
  where
    loop = await >>= maybe (return ()) go

    go seq =
        if onull x then loop else leftover x
      where
        x = Seq.dropWhile f seq
{-# INLINE dropWhileE #-}

-- | Monoidally combine all values in the stream.
--
-- Since 1.0.0
fold :: (Monad m, Monoid a)
     => Consumer a m a
fold = CL.foldMap id
{-# INLINE fold #-}

-- | Monoidally combine all elements in the chunked stream.
--
-- Since 1.0.0
foldE :: (Monad m, MonoFoldable mono, Monoid (Element mono))
      => Consumer mono m (Element mono)
foldE = CL.fold (\accum mono -> accum `mappend` ofoldMap id mono) mempty
{-# INLINE foldE #-}

-- | A strict left fold.
--
-- Since 1.0.0
foldl :: Monad m => (a -> b -> a) -> a -> Consumer b m a
foldl = CL.fold
{-# INLINE foldl #-}

-- | A strict left fold on a chunked stream.
--
-- Since 1.0.0
foldlE :: (Monad m, MonoFoldable mono)
       => (a -> Element mono -> a)
       -> a
       -> Consumer mono m a
foldlE f = CL.fold (ofoldl' f)
{-# INLINE foldlE #-}

-- | Apply the provided mapping function and monoidal combine all values.
--
-- Since 1.0.0
foldMap :: (Monad m, Monoid b)
        => (a -> b)
        -> Consumer a m b
foldMap = CL.foldMap
{-# INLINE foldMap #-}

-- | Apply the provided mapping function and monoidal combine all elements of the chunked stream.
--
-- Since 1.0.0
foldMapE :: (Monad m, MonoFoldable mono, Monoid w)
         => (Element mono -> w)
         -> Consumer mono m w
foldMapE = CL.foldMap . ofoldMap
{-# INLINE foldMapE #-}

-- | Check that all values in the stream return True.
--
-- Subject to shortcut logic: at the first False, consumption of the stream
-- will stop.
--
-- Since 1.0.0
all :: Monad m
    => (a -> Bool)
    -> Consumer a m Bool
all f =
    loop
  where
    loop = await >>= maybe (return True) go
    go x = if f x then loop else return False
{-# INLINE all #-}

-- | Check that all elements in the chunked stream return True.
--
-- Subject to shortcut logic: at the first False, consumption of the stream
-- will stop.
--
-- Since 1.0.0
allE :: (Monad m, MonoFoldable mono)
     => (Element mono -> Bool)
     -> Consumer mono m Bool
allE = all . oall

-- | Check that at least one value in the stream returns True.
--
-- Subject to shortcut logic: at the first True, consumption of the stream
-- will stop.
--
-- Since 1.0.0
any :: Monad m
    => (a -> Bool)
    -> Consumer a m Bool
any f =
    loop
  where
    loop = await >>= maybe (return False) go
    go x = if f x then return True else loop
{-# INLINE any #-}

-- | Check that at least one element in the chunked stream returns True.
--
-- Subject to shortcut logic: at the first True, consumption of the stream
-- will stop.
--
-- Since 1.0.0
anyE :: (Monad m, MonoFoldable mono)
     => (Element mono -> Bool)
     -> Consumer mono m Bool
anyE = any . oany

-- | Are all values in the stream True?
--
-- Consumption stops once the first False is encountered.
--
-- Since 1.0.0
and :: Monad m => Consumer Bool m Bool
and = all id
{-# INLINE and #-}

-- | Are all elements in the chunked stream True?
--
-- Consumption stops once the first False is encountered.
--
-- Since 1.0.0
andE :: (Monad m, MonoFoldable mono, Element mono ~ Bool)
     => Consumer mono m Bool
andE = allE id
{-# INLINE andE #-}

-- | Are any values in the stream True?
--
-- Consumption stops once the first True is encountered.
--
-- Since 1.0.0
or :: Monad m => Consumer Bool m Bool
or = any id
{-# INLINE or #-}

-- | Are any elements in the chunked stream True?
--
-- Consumption stops once the first True is encountered.
--
-- Since 1.0.0
orE :: (Monad m, MonoFoldable mono, Element mono ~ Bool)
    => Consumer mono m Bool
orE  = anyE id
{-# INLINE orE #-}

-- | Are any values in the stream equal to the given value?
--
-- Stops consuming as soon as a match is found.
--
-- Since 1.0.0
elem :: (Monad m, Eq a) => a -> Consumer a m Bool
elem x = any (== x)
{-# INLINE elem #-}

-- | Are any elements in the chunked stream equal to the given element?
--
-- Stops consuming as soon as a match is found.
--
-- Since 1.0.0
elemE :: (Monad m, Seq.EqSequence seq)
      => Element seq
      -> Consumer seq m Bool
elemE = any . Seq.elem

-- | Are no values in the stream equal to the given value?
--
-- Stops consuming as soon as a match is found.
--
-- Since 1.0.0
notElem :: (Monad m, Eq a) => a -> Consumer a m Bool
notElem x = all (/= x)
{-# INLINE notElem #-}

-- | Are no elements in the chunked stream equal to the given element?
--
-- Stops consuming as soon as a match is found.
--
-- Since 1.0.0
notElemE :: (Monad m, Seq.EqSequence seq)
         => Element seq
         -> Consumer seq m Bool
notElemE = all . Seq.notElem

-- | Consume all incoming strict chunks into a lazy sequence.
-- Note that the entirety of the sequence will be resident at memory.
--
-- This can be used to consume a stream of strict ByteStrings into a lazy
-- ByteString, for example.
--
-- Since 1.0.0
sinkLazy :: (Monad m, LazySequence lazy strict)
         => Consumer strict m lazy
sinkLazy = (fromChunks . ($ [])) <$> CL.fold (\front next -> front . (next:)) id
{-# INLINE sinkLazy #-}

-- | Consume all values from the stream and return as a list. Note that this
-- will pull all values into memory.
--
-- Since 1.0.0
sinkList :: Monad m => Consumer a m [a]
sinkList = CL.consume
{-# INLINE sinkList #-}

-- | Sink incoming values into a vector, growing the vector as necessary to fit
-- more elements.
--
-- Note that using this function is more memory efficient than @sinkList@ and
-- then converting to a @Vector@, as it avoids intermediate list constructors.
--
-- Since 1.0.0
sinkVector :: (MonadBase base m, V.Vector v a, PrimMonad base)
           => Consumer a m (v a)
sinkVector = do
    let initSize = 10
    mv0 <- liftBase $ VM.new initSize
    let go maxSize i mv | i >= maxSize = do
            let newMax = maxSize * 2
            mv' <- liftBase $ VM.grow mv maxSize
            go newMax i mv'
        go maxSize i mv = do
            mx <- await
            case mx of
                Nothing -> V.slice 0 i <$> liftBase (V.unsafeFreeze mv)
                Just x -> do
                    liftBase $ VM.write mv i x
                    go maxSize (i + 1) mv
    go initSize 0 mv0
{-# INLINEABLE sinkVector #-}

-- | Sink incoming values into a vector, up until size @maxSize@.  Subsequent
-- values will be left in the stream. If there are less than @maxSize@ values
-- present, returns a @Vector@ of smaller size.
--
-- Note that using this function is more memory efficient than @sinkList@ and
-- then converting to a @Vector@, as it avoids intermediate list constructors.
--
-- Since 1.0.0
sinkVectorN :: (MonadBase base m, V.Vector v a, PrimMonad base)
            => Int -- ^ maximum allowed size
            -> Consumer a m (v a)
sinkVectorN maxSize = do
    mv <- liftBase $ VM.new maxSize
    let go i | i >= maxSize = liftBase $ V.unsafeFreeze mv
        go i = do
            mx <- await
            case mx of
                Nothing -> V.slice 0 i <$> liftBase (V.unsafeFreeze mv)
                Just x -> do
                    liftBase $ VM.write mv i x
                    go (i + 1)
    go 0
{-# INLINEABLE sinkVectorN #-}

-- | Convert incoming values to a builder and fold together all builder values.
--
-- Defined as: @foldMap toBuilder@.
--
-- Since 1.0.0
sinkBuilder :: (Monad m, Monoid builder, ToBuilder a builder)
            => Consumer a m builder
sinkBuilder = foldMap toBuilder
{-# INLINE sinkBuilder #-}

-- | Same as @sinkBuilder@, but afterwards convert the builder to its lazy
-- representation.
--
-- Alternatively, this could be considered an alternative to @sinkLazy@, with
-- the following differences:
--
-- * This function will allow multiple input types, not just the strict version
-- of the lazy structure.
--
-- * Some buffer copying may occur in this version.
--
-- Since 1.0.0
sinkLazyBuilder :: (Monad m, Monoid builder, ToBuilder a builder, Builder builder lazy)
                => Consumer a m lazy
sinkLazyBuilder = fmap builderToLazy sinkBuilder
{-# INLINE sinkLazyBuilder #-}

-- | Consume and discard all remaining values in the stream.
--
-- Since 1.0.0
sinkNull :: Monad m => Consumer a m ()
sinkNull = CL.sinkNull
{-# INLINE sinkNull #-}

-- | Same as @await@, but discards any leading 'onull' values.
--
-- Since 1.0.0
awaitNonNull :: (Monad m, MonoFoldable a) => Consumer a m (Maybe (NonNull.NonNull a))
awaitNonNull =
    go
  where
    go = await >>= maybe (return Nothing) go'

    go' = maybe go (return . Just) . NonNull.fromNullable
{-# INLINE awaitNonNull #-}

-- | Get the next element in the chunked stream.
--
-- Since 1.0.0
headE :: (Monad m, Seq.IsSequence seq) => Consumer seq m (Maybe (Element seq))
headE =
    loop
  where
    loop = await >>= maybe (return Nothing) go
    go x =
        case Seq.uncons x of
            Nothing -> loop
            Just (y, z) -> do
                unless (onull z) $ leftover z
                return $ Just y
{-# INLINE headE #-}

-- | View the next value in the stream without consuming it.
--
-- Since 1.0.0
peek :: Monad m => Consumer a m (Maybe a)
peek = CL.peek
{-# INLINE peek #-}

-- | View the next element in the chunked stream without consuming it.
--
-- Since 1.0.0
peekE :: (Monad m, MonoFoldable mono) => Consumer mono m (Maybe (Element mono))
peekE =
    loop
  where
    loop = await >>= maybe (return Nothing) go
    go x =
        case headMay x of
            Nothing -> loop
            Just y -> do
                leftover x
                return $ Just y
{-# INLINE peekE #-}

-- | Retrieve the last value in the stream, if present.
--
-- Since 1.0.0
last :: Monad m => Consumer a m (Maybe a)
last =
    await >>= maybe (return Nothing) loop
  where
    loop prev = await >>= maybe (return $ Just prev) loop
{-# INLINE last #-}

-- | Retrieve the last element in the chunked stream, if present.
--
-- Since 1.0.0
lastE :: (Monad m, Seq.IsSequence seq) => Consumer seq m (Maybe (Element seq))
lastE =
    awaitNonNull >>= maybe (return Nothing) (loop . NonNull.last)
  where

    loop prev = awaitNonNull >>= maybe (return $ Just prev) (loop . NonNull.last)
{-# INLINE lastE #-}

-- | Count how many values are in the stream.
--
-- Since 1.0.0
length :: (Monad m, Num len) => Consumer a m len
length = foldl (\x _ -> x + 1) 0
{-# INLINE length #-}

-- | Count how many elements are in the chunked stream.
--
-- Since 1.0.0
lengthE :: (Monad m, Num len, MonoFoldable mono) => Consumer mono m len
lengthE = foldl (\x y -> x + fromIntegral (olength y)) 0
{-# INLINE lengthE #-}

-- | Count how many values in the stream pass the given predicate.
--
-- Since 1.0.0
lengthIf :: (Monad m, Num len) => (a -> Bool) -> Consumer a m len
lengthIf f = foldl (\cnt a -> if f a then (cnt + 1) else cnt) 0
{-# INLINE lengthIf #-}

-- | Count how many elements in the chunked stream pass the given predicate.
--
-- Since 1.0.0
lengthIfE :: (Monad m, Num len, MonoFoldable mono)
          => (Element mono -> Bool) -> Consumer mono m len
lengthIfE f = foldlE (\cnt a -> if f a then (cnt + 1) else cnt) 0
{-# INLINE lengthIfE #-}

-- | Get the largest value in the stream, if present.
--
-- Since 1.0.0
maximum :: (Monad m, Ord a) => Consumer a m (Maybe a)
maximum =
    await >>= maybe (return Nothing) loop
  where
    loop prev = await >>= maybe (return $ Just prev) (loop . max prev)
{-# INLINE maximum #-}

-- | Get the largest element in the chunked stream, if present.
--
-- Since 1.0.0
maximumE :: (Monad m, Seq.OrdSequence seq) => Consumer seq m (Maybe (Element seq))
maximumE =
    start
  where
    start = await >>= maybe (return Nothing) start'
    start' x =
        case NonNull.fromNullable x of
            Nothing -> start
            Just y -> loop $ NonNull.maximum y
    loop prev = await >>= maybe (return $ Just prev) (loop . ofoldl' max prev)
{-# INLINE maximumE #-}

-- | Get the smallest value in the stream, if present.
--
-- Since 1.0.0
minimum :: (Monad m, Ord a) => Consumer a m (Maybe a)
minimum =
    await >>= maybe (return Nothing) loop
  where
    loop prev = await >>= maybe (return $ Just prev) (loop . min prev)
{-# INLINE minimum #-}

-- | Get the smallest element in the chunked stream, if present.
--
-- Since 1.0.0
minimumE :: (Monad m, Seq.OrdSequence seq) => Consumer seq m (Maybe (Element seq))
minimumE =
    start
  where
    start = await >>= maybe (return Nothing) start'
    start' x =
        case NonNull.fromNullable x of
            Nothing -> start
            Just y -> loop $ NonNull.minimum y
    loop prev = await >>= maybe (return $ Just prev) (loop . ofoldl' min prev)
{-# INLINE minimumE #-}

-- | True if there are no values in the stream.
--
-- This function does not modify the stream.
--
-- Since 1.0.0
null :: Monad m => Consumer a m Bool
null = (maybe True (\_ -> False)) `fmap` peek
{-# INLINE null #-}

-- | True if there are no elements in the chunked stream.
--
-- This function may remove empty leading chunks from the stream, but otherwise
-- will not modify it.
--
-- Since 1.0.0
nullE :: (Monad m, MonoFoldable mono)
      => Consumer mono m Bool
nullE =
    go
  where
    go = await >>= maybe (return True) go'
    go' x = if onull x then go else leftover x >> return False
{-# INLINE nullE #-}

-- | Get the sum of all values in the stream.
--
-- Since 1.0.0
sum :: (Monad m, Num a) => Consumer a m a
sum = foldl (+) 0
{-# INLINE sum #-}

-- | Get the sum of all elements in the chunked stream.
--
-- Since 1.0.0
sumE :: (Monad m, MonoFoldable mono, Num (Element mono)) => Consumer mono m (Element mono)
sumE = foldlE (+) 0
{-# INLINE sumE #-}

-- | Get the product of all values in the stream.
--
-- Since 1.0.0
product :: (Monad m, Num a) => Consumer a m a
product = foldl (*) 1
{-# INLINE product #-}

-- | Get the product of all elements in the chunked stream.
--
-- Since 1.0.0
productE :: (Monad m, MonoFoldable mono, Num (Element mono)) => Consumer mono m (Element mono)
productE = foldlE (*) 1
{-# INLINE productE #-}

-- | Find the first matching value.
--
-- Since 1.0.0
find :: Monad m => (a -> Bool) -> Consumer a m (Maybe a)
find f =
    loop
  where
    loop = await >>= maybe (return Nothing) go
    go x = if f x then return (Just x) else loop

-- | Apply the action to all values in the stream.
--
-- Since 1.0.0
mapM_ :: Monad m => (a -> m ()) -> Consumer a m ()
mapM_ = CL.mapM_
{-# INLINE mapM_ #-}

-- | Apply the action to all elements in the chunked stream.
--
-- Since 1.0.0
mapM_E :: (Monad m, MonoFoldable mono) => (Element mono -> m ()) -> Consumer mono m ()
mapM_E = CL.mapM_ . omapM_
{-# INLINE mapM_E #-}

-- | A monadic strict left fold.
--
-- Since 1.0.0
foldM :: Monad m => (a -> b -> m a) -> a -> Consumer b m a
foldM = CL.foldM
{-# INLINE foldM #-}

-- | A monadic strict left fold on a chunked stream.
--
-- Since 1.0.0
foldME :: (Monad m, MonoFoldable mono)
       => (a -> Element mono -> m a)
       -> a
       -> Consumer mono m a
foldME f = foldM (ofoldlM f)
{-# INLINE foldME #-}

-- | Apply the provided monadic mapping function and monoidal combine all values.
--
-- Since 1.0.0
foldMapM :: (Monad m, Monoid w) => (a -> m w) -> Consumer a m w
foldMapM = CL.foldMapM
{-# INLINE foldMapM #-}

-- | Apply the provided monadic mapping function and monoidal combine all
-- elements in the chunked stream.
--
-- Since 1.0.0
foldMapME :: (Monad m, MonoFoldable mono, Monoid w)
          => (Element mono -> m w)
          -> Consumer mono m w
foldMapME f =
    CL.foldM go mempty
  where
    go = ofoldlM (\accum e -> mappend accum `liftM` f e)
{-# INLINE foldMapME #-}

-- | Write all data to the given file.
--
-- This function automatically opens and closes the file handle, and ensures
-- exception safety via @MonadResource. It works for all instances of @IOData@,
-- including @ByteString@ and @Text@.
--
-- Since 1.0.0
sinkFile :: (MonadResource m, IOData a) => FilePath -> Consumer a m ()
sinkFile fp = sinkIOHandle (F.openFile fp SIO.WriteMode)
{-# INLINE sinkFile #-}

-- | Print all incoming values to stdout.
--
-- Since 1.0.0
print :: (Show a, MonadIO m) => Consumer a m ()
print = mapM_ (liftIO . Prelude.print)

-- | @sinkHandle@ applied to @stdout@.
--
-- Since 1.0.0
stdout :: (MonadIO m, IOData a) => Consumer a m ()
stdout = sinkHandle SIO.stdout

-- | @sinkHandle@ applied to @stderr@.
--
-- Since 1.0.0
stderr :: (MonadIO m, IOData a) => Consumer a m ()
stderr = sinkHandle SIO.stderr

-- | Write all data to the given @Handle@.
--
-- Does not close the @Handle@ at any point.
--
-- Since 1.0.0
sinkHandle :: (MonadIO m, IOData a) => Handle -> Consumer a m ()
sinkHandle = CL.mapM_ . hPut
{-# INLINE sinkHandle #-}

-- | Open a @Handle@ using the given function and stream data to it.
--
-- Automatically closes the file at completion.
--
-- Since 1.0.0
sinkIOHandle :: (MonadResource m, IOData a) => SIO.IO Handle -> Consumer a m ()
sinkIOHandle alloc = bracketP alloc SIO.hClose sinkHandle
{-# INLINE sinkIOHandle #-}

-- | Apply a transformation to all values in a stream.
--
-- Since 1.0.0
map :: Monad m => (a -> b) -> Conduit a m b
map = CL.map
{-# INLINE map #-}

-- | Apply a transformation to all elements in a chunked stream.
--
-- Since 1.0.0
mapE :: (Monad m, Functor f) => (a -> b) -> Conduit (f a) m (f b)
mapE = CL.map . fmap
{-# INLINE mapE #-}

-- | Apply a monomorphic transformation to all elements in a chunked stream.
--
-- Unlike @mapE@, this will work on types like @ByteString@ and @Text@ which
-- are @MonoFunctor@ but not @Functor@.
--
-- Since 1.0.0
omapE :: (Monad m, MonoFunctor mono) => (Element mono -> Element mono) -> Conduit mono m mono
omapE = CL.map . omap
{-# INLINE omapE #-}

-- | Apply the function to each value in the stream, resulting in a foldable
-- value (e.g., a list). Then yield each of the individual values in that
-- foldable value separately.
--
-- Generalizes concatMap, mapMaybe, and mapFoldable.
--
-- Since 1.0.0
concatMap :: (Monad m, MonoFoldable mono)
          => (a -> mono)
          -> Conduit a m (Element mono)
concatMap f = awaitForever (yieldMany . f)
{-# INLINE concatMap #-}

-- | Apply the function to each element in the chunked stream, resulting in a
-- foldable value (e.g., a list). Then yield each of the individual values in
-- that foldable value separately.
--
-- Generalizes concatMap, mapMaybe, and mapFoldable.
--
-- Since 1.0.0
concatMapE :: (Monad m, MonoFoldable mono, Monoid w)
           => (Element mono -> w)
           -> Conduit mono m w
concatMapE = CL.map . ofoldMap
{-# INLINE concatMapE #-}

-- | Stream up to n number of values downstream.
--
-- Note that, if downstream terminates early, not all values will be consumed.
-- If you want to force /exactly/ the given number of values to be consumed,
-- see 'takeExactly'.
--
-- Since 1.0.0
take :: Monad m => Int -> Conduit a m a
take =
    loop
  where
    loop count = if count <= 0
        then return ()
        else await >>= maybe (return ()) (\i -> yield i >> loop (count - 1))
{-# INLINE take #-}

-- | Stream up to n number of elements downstream in a chunked stream.
--
-- Note that, if downstream terminates early, not all values will be consumed.
-- If you want to force /exactly/ the given number of values to be consumed,
-- see 'takeExactlyE'.
--
-- Since 1.0.0
takeE :: (Monad m, Seq.IsSequence seq)
      => Seq.Index seq
      -> Conduit seq m seq
takeE =
    loop
  where
    loop i = if i <= 0
        then return ()
        else await >>= maybe (return ()) (go i)

    go i seq = do
        unless (onull x) $ yield x
        unless (onull y) $ leftover y
        loop i'
      where
        (x, y) = Seq.splitAt i seq
        i' = i - fromIntegral (olength x)
{-# INLINEABLE takeE #-}

-- | Stream all values downstream that match the given predicate.
--
-- Same caveats regarding downstream termination apply as with 'take'.
--
-- Since 1.0.0
takeWhile :: Monad m
          => (a -> Bool)
          -> Conduit a m a
takeWhile f =
    loop
  where
    loop = await >>= maybe (return ()) go
    go x = if f x
        then yield x >> loop
        else leftover x
{-# INLINE takeWhile #-}

-- | Stream all elements downstream that match the given predicate in a chunked stream.
--
-- Same caveats regarding downstream termination apply as with 'takeE'.
--
-- Since 1.0.0
takeWhileE :: (Monad m, Seq.IsSequence seq)
           => (Element seq -> Bool)
           -> Conduit seq m seq
takeWhileE f =
    loop
  where
    loop = await >>= maybe (return ()) go

    go seq = do
        unless (onull x) $ yield x
        if onull y
            then loop
            else leftover y
      where
        (x, y) = Seq.span f seq
{-# INLINE takeWhileE #-}

-- | Consume precisely the given number of values and feed them downstream.
--
-- This function is in contrast to 'take', which will only consume up to the
-- given number of values, and will terminate early if downstream terminates
-- early. This function will discard any additional values in the stream if
-- they are unconsumed.
--
-- Note that this function takes a downstream @ConduitM@ as a parameter, as
-- opposed to working with normal fusion. For more information, see
-- <http://www.yesodweb.com/blog/2013/10/core-flaw-pipes-conduit>, the section
-- titled \"pipes and conduit: isolate\".
--
-- Since 1.0.0
takeExactly :: Monad m
            => Int
            -> ConduitM a b m r
            -> ConduitM a b m r
takeExactly count inner = take count =$= do
    r <- inner
    CL.sinkNull
    return r
{-# INLINE takeExactly #-}

-- | Same as 'takeExactly', but for chunked streams.
--
-- Since 1.0.0
takeExactlyE :: (Monad m, Seq.IsSequence a)
             => Seq.Index a
             -> ConduitM a b m r
             -> ConduitM a b m r
takeExactlyE count inner = takeE count =$= do
    r <- inner
    CL.sinkNull
    return r
{-# INLINE takeExactlyE #-}

-- | Flatten out a stream by yielding the values contained in an incoming
-- @MonoFoldable@ as individually yielded values.
--
-- Since 1.0.0
concat :: (Monad m, MonoFoldable mono)
       => Conduit mono m (Element mono)
concat = awaitForever yieldMany
{-# INLINE concat #-}

-- | Keep only values in the stream passing a given predicate.
--
-- Since 1.0.0
filter :: Monad m => (a -> Bool) -> Conduit a m a
filter = CL.filter
{-# INLINE filter #-}

-- | Keep only elements in the chunked stream passing a given predicate.
--
-- Since 1.0.0
filterE :: (Seq.IsSequence seq, Monad m) => (Element seq -> Bool) -> Conduit seq m seq
filterE = CL.map . Seq.filter
{-# INLINE filterE #-}

-- | Map values as long as the result is @Just@.
--
-- Since 1.0.0
mapWhile :: Monad m => (a -> Maybe b) -> Conduit a m b
mapWhile f =
    loop
  where
    loop = await >>= maybe (return ()) go
    go x =
        case f x of
            Just y -> yield y >> loop
            Nothing -> leftover x
{-# INLINE mapWhile #-}

-- | Break up a stream of values into vectors of size n. The final vector may
-- be smaller than n if the total number of values is not a strict multiple of
-- n. No empty vectors will be yielded.
--
-- Since 1.0.0
conduitVector :: (MonadBase base m, V.Vector v a, PrimMonad base)
              => Int -- ^ maximum allowed size
              -> Conduit a m (v a)
conduitVector size =
    loop
  where
    loop = do
        v <- sinkVectorN size
        unless (V.null v) $ do
            yield v
            loop
{-# INLINE conduitVector #-}

-- | Analog of 'Prelude.scanl' for lists.
--
-- Since 1.0.6
scanl :: Monad m => (a -> b -> a) -> a -> Conduit b m a
scanl f =
    loop
  where
    loop seed =
        await >>= maybe (yield seed) go
      where
        go b = do
            let seed' = f seed b
            seed' `seq` yield seed
            loop seed'
{-# INLINE scanl #-}

-- | 'concatMap' with an accumulator.
--
-- Since 1.0.0
concatMapAccum :: Monad m => (a -> accum -> (accum, [b])) -> accum -> Conduit a m b
concatMapAccum = CL.concatMapAccum
{-# INLINE concatMapAccum #-}

-- | Insert the given value between each two values in the stream.
--
-- Since 1.0.0
intersperse :: Monad m => a -> Conduit a m a
intersperse x =
    await >>= omapM_ go
  where
    go y = yield y >> concatMap (\z -> [x, z])
{-# INLINE intersperse #-}

-- | Sliding window of values
-- 1,2,3,4,5 with window size 2 gives
-- [1,2],[2,3],[3,4],[4,5]
--
-- Best used with structures that support O(1) snoc.
--
-- Since 1.0.0
slidingWindow :: (Monad m, Seq.IsSequence seq, Element seq ~ a) => Int -> Conduit a m seq
slidingWindow sz = go (if sz <= 0 then 1 else sz) mempty
    where goContinue st = await >>=
                          maybe (return ())
                                (\x -> do
                                   let st' = Seq.snoc st x
                                   yield st' >> goContinue (Seq.unsafeTail st')
                                )
          go 0 st = yield st >> goContinue (Seq.unsafeTail st)
          go !n st = CL.head >>= \m ->
                     case m of
                       Nothing -> yield st
                       Just x -> go (n-1) (Seq.snoc st x)

codeWith :: Monad m
         => Int
         -> (ByteString -> Either e ByteString)
         -> Conduit ByteString m ByteString
codeWith size f =
    loop
  where
    loop = await >>= maybe (return ()) push

    loopWith bs
        | S.null bs = loop
        | otherwise = await >>= maybe (finish bs) (pushWith bs)

    finish bs =
        case f bs of
            Left _ -> leftover bs
            Right x -> yield x

    push bs = do
        let (x, y) = S.splitAt (len - (len `mod` size)) bs
        if S.null x
            then loopWith y
            else do
                case f x of
                    Left _ -> leftover bs
                    Right x' -> yield x' >> loopWith y
      where
        len = olength bs

    pushWith bs1 bs2 | S.length bs1 + S.length bs2 < size = loopWith (S.append bs1 bs2)
    pushWith bs1 bs2 = assertion1 $ assertion2 $ assertion3 $
        case f bs1' of
            Left _ -> leftover bs2 >> leftover bs1
            Right toYield -> yield toYield >> push y
      where
        m = S.length bs1 `mod` size
        (x, y) = S.splitAt (size - m) bs2
        bs1' = mappend bs1 x

        assertion1 = assert $ olength bs1 < size
        assertion2 = assert $ olength bs1' `mod` size == 0
        assertion3 = assert $ olength bs1' > 0

-- | Apply base64-encoding to the stream.
--
-- Since 1.0.0
encodeBase64 :: Monad m => Conduit ByteString m ByteString
encodeBase64 = codeWith 3 (Right . B64.encode)
{-# INLINE encodeBase64 #-}

-- | Apply base64-decoding to the stream. Will stop decoding on the first
-- invalid chunk.
--
-- Since 1.0.0
decodeBase64 :: Monad m => Conduit ByteString m ByteString
decodeBase64 = codeWith 4 B64.decode
{-# INLINE decodeBase64 #-}

-- | Apply URL-encoding to the stream.
--
-- Since 1.0.0
encodeBase64URL :: Monad m => Conduit ByteString m ByteString
encodeBase64URL = codeWith 3 (Right . B64U.encode)
{-# INLINE encodeBase64URL #-}

-- | Apply lenient base64URL-decoding to the stream. Will stop decoding on the
-- first invalid chunk.
--
-- Since 1.0.0
decodeBase64URL :: Monad m => Conduit ByteString m ByteString
decodeBase64URL = codeWith 4 B64U.decode
{-# INLINE decodeBase64URL #-}

-- | Apply base16-encoding to the stream.
--
-- Since 1.0.0
encodeBase16 :: Monad m => Conduit ByteString m ByteString
encodeBase16 = map B16.encode
{-# INLINE encodeBase16 #-}

-- | Apply base16-decoding to the stream. Will stop decoding on the first
-- invalid chunk.
--
-- Since 1.0.0
decodeBase16 :: Monad m => Conduit ByteString m ByteString
decodeBase16 =
    codeWith 2 decode'
  where
    decode' x
        | onull z = Right y
        | otherwise = Left ()
      where
        (y, z) = B16.decode x
{-# INLINE decodeBase16 #-}

-- | Apply a monadic transformation to all values in a stream.
--
-- If you do not need the transformed values, and instead just want the monadic
-- side-effects of running the action, see 'mapM_'.
--
-- Since 1.0.0
mapM :: Monad m => (a -> m b) -> Conduit a m b
mapM = CL.mapM
{-# INLINE mapM #-}

-- | Apply a monadic transformation to all elements in a chunked stream.
--
-- Since 1.0.0
mapME :: (Monad m, Data.Traversable.Traversable f) => (a -> m b) -> Conduit (f a) m (f b)
mapME = CL.mapM . Data.Traversable.mapM
{-# INLINE mapME #-}

-- | Apply a monadic monomorphic transformation to all elements in a chunked stream.
--
-- Unlike @mapME@, this will work on types like @ByteString@ and @Text@ which
-- are @MonoFunctor@ but not @Functor@.
--
-- Since 1.0.0
omapME :: (Monad m, MonoTraversable mono)
       => (Element mono -> m (Element mono))
       -> Conduit mono m mono
omapME = CL.mapM . omapM
{-# INLINE omapME #-}

-- | Apply the monadic function to each value in the stream, resulting in a
-- foldable value (e.g., a list). Then yield each of the individual values in
-- that foldable value separately.
--
-- Generalizes concatMapM, mapMaybeM, and mapFoldableM.
--
-- Since 1.0.0
concatMapM :: (Monad m, MonoFoldable mono)
           => (a -> m mono)
           -> Conduit a m (Element mono)
concatMapM f = awaitForever (lift . f >=> yieldMany)
{-# INLINE concatMapM #-}

-- | Keep only values in the stream passing a given monadic predicate.
--
-- Since 1.0.0
filterM :: Monad m
        => (a -> m Bool)
        -> Conduit a m a
filterM f =
    awaitForever go
  where
    go x = do
        b <- lift $ f x
        when b $ yield x
{-# INLINE filterM #-}

-- | Keep only elements in the chunked stream passing a given monadic predicate.
--
-- Since 1.0.0
filterME :: (Monad m, Seq.IsSequence seq) => (Element seq -> m Bool) -> Conduit seq m seq
filterME = CL.mapM . Seq.filterM
{-# INLINE filterME #-}

-- | Apply a monadic action on all values in a stream.
--
-- This @Conduit@ can be used to perform a monadic side-effect for every
-- value, whilst passing the value through the @Conduit@ as-is.
--
-- > iterM f = mapM (\a -> f a >>= \() -> return a)
--
-- Since 1.0.0
iterM :: Monad m => (a -> m ()) -> Conduit a m a
iterM = CL.iterM

-- | Analog of 'Prelude.scanl' for lists, monadic.
--
-- Since 1.0.6
scanlM :: Monad m => (a -> b -> m a) -> a -> Conduit b m a
scanlM f =
    loop
  where
    loop seed =
        await >>= maybe (yield seed) go
      where
        go b = do
            seed' <- lift $ f seed b
            seed' `seq` yield seed
            loop seed'
{-# INLINE scanlM #-}

-- | 'concatMapM' with an accumulator.
--
-- Since 1.0.0
concatMapAccumM :: Monad m => (a -> accum -> m (accum, [b])) -> accum -> Conduit a m b
concatMapAccumM = CL.concatMapAccumM
{-# INLINE concatMapAccumM #-}

-- | Encode a stream of text as UTF8.
--
-- Since 1.0.0
encodeUtf8 :: (Monad m, DTE.Utf8 text binary) => Conduit text m binary
encodeUtf8 = map DTE.encodeUtf8

-- | Decode a stream of binary data as UTF8.
--
-- Since 1.0.0
decodeUtf8 :: MonadThrow m => Conduit ByteString m Text
decodeUtf8 = CT.decode CT.utf8

-- | Decode a stream of binary data as UTF8, replacing any invalid bytes with
-- the Unicode replacement character.
--
-- Since 1.0.0
decodeUtf8Lenient :: MonadThrow m => Conduit ByteString m Text
decodeUtf8Lenient = CT.decodeUtf8Lenient

-- | Stream in the entirety of a single line.
--
-- Like @takeExactly@, this will consume the entirety of the line regardless of
-- the behavior of the inner Conduit.
--
-- Since 1.0.0
line :: (Monad m, Seq.IsSequence seq, Element seq ~ Char)
     => ConduitM seq o m r
     -> ConduitM seq o m r
line inner = do
    loop =$= do
        x <- inner
        sinkNull
        return x
  where
    loop = await >>= omapM_ go
    go t =
        if onull y
            then yield x >> loop
            else do
                unless (onull x) $ yield x
                let y' = Seq.drop 1 y
                unless (onull y') $ leftover y'
      where
        (x, y) = Seq.break (== '\n') t
{-# INLINE line #-}

-- | Same as 'line', but operates on ASCII/binary data.
--
-- Since 1.0.0
lineAscii :: (Monad m, Seq.IsSequence seq, Element seq ~ Word8)
          => ConduitM seq o m r
          -> ConduitM seq o m r
lineAscii inner =
    loop =$= do
        x <- inner
        sinkNull
        return x
  where
    loop = await >>= omapM_ go
    go t =
        if onull y
            then yield x >> loop
            else do
                unless (onull x) $ yield x
                let y' = Seq.drop 1 y
                unless (onull y') $ leftover y'
      where
        (x, y) = Seq.break (== 10) t
{-# INLINE lineAscii #-}

-- | Insert a newline character after each incoming chunk of data.
--
-- Since 1.0.0
unlines :: (Monad m, Seq.IsSequence seq, Element seq ~ Char) => Conduit seq m seq
unlines = concatMap (:[Seq.singleton '\n'])
{-# INLINE unlines #-}

-- | Same as 'unlines', but operates on ASCII/binary data.
--
-- Since 1.0.0
unlinesAscii :: (Monad m, Seq.IsSequence seq, Element seq ~ Word8) => Conduit seq m seq
unlinesAscii = concatMap (:[Seq.singleton 10])
{-# INLINE unlinesAscii #-}

-- | Convert a stream of arbitrarily-chunked textual data into a stream of data
-- where each chunk represents a single line. Note that, if you have
-- unknown/untrusted input, this function is /unsafe/, since it would allow an
-- attacker to form lines of massive length and exhaust memory.
--
-- Since 1.0.0
linesUnbounded :: (Monad m, Seq.IsSequence seq, Element seq ~ Char)
               => Conduit seq m seq
linesUnbounded =
    start
  where
    start = await >>= maybe (return ()) loop

    loop t =
        if onull y
            then do
                mt <- await
                case mt of
                    Nothing -> unless (onull t) $ yield t
                    Just t' -> loop (t `mappend` t')
            else yield x >> loop (Seq.drop 1 y)
      where
        (x, y) = Seq.break (== '\n') t

-- | Same as 'linesUnbounded', but for ASCII/binary data.
--
-- Since 1.0.0
linesUnboundedAscii :: (Monad m, Seq.IsSequence seq, Element seq ~ Word8)
                    => Conduit seq m seq
linesUnboundedAscii =
    start
  where
    start = await >>= maybe (return ()) loop

    loop t =
        if onull y
            then do
                mt <- await
                case mt of
                    Nothing -> unless (onull t) $ yield t
                    Just t' -> loop (t `mappend` t')
            else yield x >> loop (Seq.drop 1 y)
      where
        (x, y) = Seq.break (== 10) t

-- | Generally speaking, yielding values from inside a Conduit requires
-- some allocation for constructors. This can introduce an overhead,
-- similar to the overhead needed to represent a list of values instead of
-- a vector. This overhead is even more severe when talking about unboxed
-- values.
--
-- This combinator allows you to overcome this overhead, and efficiently
-- fill up vectors. It takes two parameters. The first is the size of each
-- mutable vector to be allocated. The second is a function. The function
-- takes an argument which will yield the next value into a mutable
-- vector.
--
-- Under the surface, this function uses a number of tricks to get high
-- performance. For more information on both usage and implementation,
-- please see:
-- <https://www.fpcomplete.com/user/snoyberg/library-documentation/vectorbuilder>
--
-- Since 1.0.0
vectorBuilder :: (PrimMonad base, MonadBase base m, V.Vector v e, MonadBase base n)
              => Int -- ^ size
              -> ((e -> n ()) -> Sink i m r)
              -> ConduitM i (v e) m r
vectorBuilder size inner = do
    ref <- liftBase $ do
        mv <- VM.new size
        newMutVar $! S 0 mv id
    res <- onAwait (yieldS ref) (inner (liftBase . addE ref))
    vs <- liftBase $ do
        S idx mv front <- readMutVar ref
        end <-
            if idx == 0
                then return []
                else do
                    v <- V.unsafeFreeze mv
                    return [V.unsafeTake idx v]
        return $ front end
    Prelude.mapM_ yield vs
    return res
{-# INLINE vectorBuilder #-}

data S s v e = S
    {-# UNPACK #-} !Int -- index
    !(V.Mutable v s e)
    ([v e] -> [v e])

onAwait :: Monad m
        => ConduitM i o m ()
        -> Sink i m r
        -> ConduitM i o m r
onAwait (ConduitM callback) =
    ConduitM . go . unConduitM
  where
    go (Done r) = Done r
    go (HaveOutput _ _ o) = absurd o
    go (NeedInput f g) = callback >> NeedInput (go . f) (go . g)
    go (PipeM mp) = PipeM (liftM go mp)
    go (Leftover f i) = Leftover (go f) i
{-# INLINE onAwait #-}

yieldS :: (PrimMonad base, MonadBase base m)
       => MutVar (PrimState base) (S (PrimState base) v e)
       -> Producer m (v e)
yieldS ref = do
    S idx mv front <- liftBase $ readMutVar ref
    Prelude.mapM_ yield (front [])
    liftBase $ writeMutVar ref $! S idx mv id
{-# INLINE yieldS #-}

addE :: (PrimMonad m, V.Vector v e)
     => MutVar (PrimState m) (S (PrimState m) v e)
     -> e
     -> m ()
addE ref e = do
    S idx mv front <- readMutVar ref
    VM.write mv idx e
    let idx' = succ idx
        size = VM.length mv
    if idx' >= size
        then do
            v <- V.unsafeFreeze mv
            let front' = front . (v:)
            mv' <- VM.new size
            writeMutVar ref $! S 0 mv' front'
        else writeMutVar ref $! S idx' mv front
{-# INLINE addE #-}