File: StreamSpec.hs

package info (click to toggle)
haskell-conduit 1.3.6-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 516 kB
  • sloc: haskell: 8,068; ansic: 20; makefile: 4
file content (512 lines) | stat: -rw-r--r-- 19,498 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module StreamSpec where

import           Control.Arrow (first)
import           Control.Applicative
import qualified Control.Monad
import           Control.Monad (liftM)
import           Control.Monad.Identity (Identity, runIdentity)
import           Control.Monad.State (StateT(..), get, put)
import           Data.Conduit
import           Data.Conduit.Combinators
import           Data.Conduit.Combinators.Stream
import           Data.Conduit.Internal.Fusion
import           Data.Conduit.Internal.List.Stream (takeS, sourceListS, mapS)
import qualified Data.List
import           Data.MonoTraversable
import           Data.Monoid (Monoid(..))
import qualified Data.NonNull as NonNull
import           Data.Sequence (Seq)
import qualified Data.Sequences as Seq
import           Data.Vector (Vector)
import qualified Prelude
import           Prelude
    ((.), ($), (>>=), (=<<), return, id, Maybe(..), Either(..), Monad,
     Bool(..), Int, Eq, Show, String, Functor, fst, snd, either)
import qualified Safe
import qualified System.IO as IO
import           System.IO.Unsafe
import           Test.Hspec
import           Test.QuickCheck
import           Data.Semigroup (Semigroup (..))

spec :: Spec
spec = do
    describe "Comparing list function to" $ do
        qit "yieldMany" $
            \(mono :: Seq Int) ->
                yieldMany mono `checkProducer`
                otoList mono
        qit "sourceListS" $
            \(mono :: Seq Int) ->
                yieldManyS mono `checkStreamProducer`
                otoList mono
        qit "repeatM" $
            \(getBlind -> (f :: M Int)) ->
                repeatM f `checkInfiniteProducerM`
                repeatML f
        qit "repeatMS" $
            \(getBlind -> (f :: M Int)) ->
                repeatMS f `checkInfiniteStreamProducerM`
                repeatML f
        qit "repeatWhileM" $
            \(getBlind -> (f :: M Int), getBlind -> g) ->
                repeatWhileM f g `checkInfiniteProducerM`
                repeatWhileML f g
        qit "repeatWhileMS" $
            \(getBlind -> (f :: M Int), getBlind -> g) ->
                repeatWhileMS f g `checkInfiniteStreamProducerM`
                repeatWhileML f g
        qit "foldl1" $
            \(getBlind -> f) ->
                foldl1 f `checkConsumer`
                foldl1L f
        qit "foldl1S" $
            \(getBlind -> f) ->
                foldl1S f `checkStreamConsumer`
                foldl1L f
        qit "all" $
            \(getBlind -> f) ->
                all f `checkConsumer`
                Prelude.all f
        qit "allS" $
            \(getBlind -> f) ->
                allS f `checkStreamConsumer`
                Prelude.all f
        qit "any" $
            \(getBlind -> f) ->
                any f `checkConsumer`
                Prelude.any f
        qit "anyS" $
            \(getBlind -> f) ->
                anyS f `checkStreamConsumer`
                Prelude.any f
        qit "last" $
            \() ->
                last `checkConsumer`
                Safe.lastMay
        qit "lastS" $
            \() ->
                lastS `checkStreamConsumer`
                Safe.lastMay
        qit "lastE" $
            \(getBlind -> f) ->
                let g x = Seq.replicate (Prelude.abs (getSmall (f x))) x :: Seq Int
                 in (map g .| lastE) `checkConsumer`
                    (lastEL . Prelude.map g :: [Int] -> Maybe Int)
        qit "lastES" $
            \(getBlind -> f) ->
                let g x = Seq.replicate (Prelude.abs (getSmall (f x))) x :: Seq Int
                 in (lastES . mapS g) `checkStreamConsumer`
                    (lastEL . Prelude.map g :: [Int] -> Maybe Int)
        qit "find" $
            \(getBlind -> f) ->
                find f `checkConsumer`
                Data.List.find f
        qit "findS" $
            \(getBlind -> f) ->
                findS f `checkStreamConsumer`
                Data.List.find f
        qit "concatMap" $
            \(getBlind -> (f :: Int -> Seq Int)) ->
                concatMap f `checkConduit`
                concatMapL f
        qit "concatMapS" $
            \(getBlind -> (f :: Int -> Seq Int)) ->
                concatMapS f `checkStreamConduit`
                concatMapL f
        qit "concatMapM" $
            \(getBlind -> (f :: Int -> M (Seq Int))) ->
                concatMapM f `checkConduitT`
                concatMapML f
        qit "concatMapMS" $
            \(getBlind -> (f :: Int -> M (Seq Int))) ->
                concatMapMS f `checkStreamConduitT`
                concatMapML f
        qit "concat" $
            \() ->
                concat `checkConduit`
                (concatL :: [Seq Int] -> [Int])
        qit "concatS" $
            \() ->
                concatS `checkStreamConduit`
                (concatL :: [Seq Int] -> [Int])
        qit "scanl" $
            \(getBlind -> (f :: Int -> Int -> Int), initial) ->
                scanl f initial `checkConduit`
                Prelude.scanl f initial
        qit "scanlS" $
            \(getBlind -> (f :: Int -> Int -> Int), initial) ->
                scanlS f initial `checkStreamConduit`
                Prelude.scanl f initial
        qit "scanlM" $
            \(getBlind -> (f :: Int -> Int -> M Int), initial) ->
                scanlM f initial `checkConduitT`
                scanlML f initial
        qit "scanlMS" $
            \(getBlind -> (f :: Int -> Int -> M Int), initial) ->
                scanlMS f initial `checkStreamConduitT`
                scanlML f initial
        qit "mapAccumWhileS" $
            \(getBlind -> ( f :: Int -> [Int] -> Either [Int] ([Int], Int))
                          , initial :: [Int]) ->
                mapAccumWhileS f initial `checkStreamConduitResult`
                mapAccumWhileL f initial
        qit "mapAccumWhileMS" $
            \(getBlind -> ( f :: Int -> [Int] -> M (Either [Int] ([Int], Int)))
                          , initial :: [Int]) ->
                mapAccumWhileMS f initial `checkStreamConduitResultM`
                mapAccumWhileML f initial
        qit "intersperse" $
            \(sep :: Int) ->
                intersperse sep `checkConduit`
                Data.List.intersperse sep
        qit "intersperseS" $
            \(sep :: Int) ->
                intersperseS sep `checkStreamConduit`
                Data.List.intersperse sep
        qit "filterM" $
            \(getBlind -> (f :: Int -> M Bool)) ->
                filterM f `checkConduitT`
                Control.Monad.filterM f
        qit "filterMS" $
            \(getBlind -> (f :: Int -> M Bool)) ->
                filterMS f `checkStreamConduitT`
                Control.Monad.filterM f
    describe "comparing normal conduit function to" $ do
        qit "slidingWindowS" $
            \(getSmall -> n) ->
                slidingWindowS n `checkStreamConduit`
                (\xs -> runConduitPure $
                    yieldMany xs .| preventFusion (slidingWindow n) .| sinkList
                    :: [Seq Int])
        qit "splitOnUnboundedES" $
            \(getBlind -> (f :: Int -> Bool)) ->
                splitOnUnboundedES f `checkStreamConduit`
                (\xs -> runConduitPure $
                    yieldMany xs .| preventFusion (splitOnUnboundedE f) .| sinkList
                    :: [Seq Int])
        qit "sinkVectorS" $
            \() -> checkStreamConsumerM'
                unsafePerformIO
                (sinkVectorS :: forall o. StreamConduitT Int o IO.IO (Vector Int))
                (\xs -> runConduit $ yieldMany xs .| preventFusion sinkVector)
        qit "sinkVectorNS" $
            \(getSmall . getNonNegative -> n) -> checkStreamConsumerM'
                unsafePerformIO
                (sinkVectorNS n :: forall o. StreamConduitT Int o IO.IO (Vector Int))
                (\xs -> runConduit $ yieldMany xs .| preventFusion (sinkVectorN n))

#if !MIN_VERSION_QuickCheck(2,8,2)
instance Arbitrary a => Arbitrary (Seq a) where
    arbitrary = Seq.fromList <$> arbitrary
#endif

repeatML :: Monad m => m a -> m [a]
repeatML = Prelude.sequence . Prelude.repeat

repeatWhileML :: Monad m => m a -> (a -> Bool) -> m [a]
repeatWhileML m f = go
  where
    go = do
        x <- m
        if f x
           then liftM (x:) go
           else return []

foldl1L :: (a -> a -> a) -> [a] -> Maybe a
foldl1L _ [] = Nothing
foldl1L f xs = Just $ Prelude.foldl1 f xs

lastEL :: Seq.IsSequence seq
       => [seq] -> Maybe (Element seq)
lastEL = Prelude.foldl go Nothing
  where
    go _ (NonNull.fromNullable -> Just l) = Just (NonNull.last l)
    go mlast _ = mlast

concatMapL :: MonoFoldable mono
           => (a -> mono) -> [a] -> [Element mono]
concatMapL f = Prelude.concatMap (otoList . f)

concatMapML :: (Monad m, MonoFoldable mono)
             => (a -> m mono) -> [a] -> m [Element mono]
concatMapML f = liftM (Prelude.concatMap otoList) . Prelude.mapM f

concatL :: MonoFoldable mono
        => [mono] -> [Element mono]
concatL = Prelude.concatMap otoList

scanlML :: Monad m => (a -> b -> m a) -> a -> [b] -> m [a]
scanlML f = go
  where
    go l [] = return [l]
    go l (r:rs) = do
        l' <- f l r
        liftM (l:) (go l' rs)

mapAccumWhileL :: (a -> s -> Either s (s, b)) -> s -> [a] -> ([b], s)
mapAccumWhileL f = (runIdentity.) . mapAccumWhileML ((return.) . f)

mapAccumWhileML :: Monad m =>
    (a -> s -> m (Either s (s, b))) -> s -> [a] -> m ([b], s)
mapAccumWhileML f = go
    where go s []     = return ([], s)
          go s (a:as) = f a s >>= either
              (return . ([], ))
              (\(s', b) -> liftM (first (b:)) $ go s' as)

--FIXME: the following code is directly copied from the conduit test
--suite.  How to share this code??

qit :: (Arbitrary a, Testable prop, Show a)
     => String -> (a -> prop) -> Spec
qit n f = it n $ property $ forAll arbitrary f

--------------------------------------------------------------------------------
-- Quickcheck utilities for pure conduits / streams

checkProducer :: (Show a, Eq a) => ConduitT () a Identity () -> [a] -> Property
checkProducer c l  = checkProducerM' runIdentity c (return l)

checkStreamProducer :: (Show a, Eq a) => StreamSource Identity a -> [a] -> Property
checkStreamProducer s l = checkStreamProducerM' runIdentity s (return l)

checkInfiniteProducer :: (Show a, Eq a) => ConduitT () a Identity () -> [a] -> Property
checkInfiniteProducer c l = checkInfiniteProducerM' runIdentity c (return l)

checkInfiniteStreamProducer :: (Show a, Eq a) => StreamSource Identity a -> [a] -> Property
checkInfiniteStreamProducer s l = checkInfiniteStreamProducerM' runIdentity s (return l)

checkConsumer :: (Show b, Eq b) => ConduitT Int Void Identity b -> ([Int] -> b) -> Property
checkConsumer c l = checkConsumerM' runIdentity c (return . l)

checkStreamConsumer :: (Show b, Eq b) => StreamConduitT Int o Identity b -> ([Int] -> b) -> Property
checkStreamConsumer c l = checkStreamConsumerM' runIdentity c (return . l)

checkConduit :: (Show a, Arbitrary a, Show b, Eq b) => ConduitT a b Identity () -> ([a] -> [b]) -> Property
checkConduit c l = checkConduitT' runIdentity c (return . l)

checkStreamConduit :: (Show a, Arbitrary a, Show b, Eq b) => StreamConduit a Identity b -> ([a] -> [b]) -> Property
checkStreamConduit c l = checkStreamConduitT' runIdentity c (return . l)

-- checkConduitResult :: (Show a, Arbitrary a, Show b, Eq b, Show r, Eq r) => ConduitT a b Identity r -> ([a] -> ([b], r)) -> Property
-- checkConduitResult c l = checkConduitResultM' runIdentity c (return . l)

checkStreamConduitResult :: (Show a, Arbitrary a, Show b, Eq b, Show r, Eq r) => StreamConduitT a b Identity r -> ([a] -> ([b], r)) -> Property
checkStreamConduitResult c l = checkStreamConduitResultM' runIdentity c (return . l)

--------------------------------------------------------------------------------
-- Quickcheck utilities for conduits / streams in the M monad.

checkProducerM :: (Show a, Eq a) => ConduitT () a M () -> M [a] -> Property
checkProducerM = checkProducerM' runM

checkStreamProducerM :: (Show a, Eq a) => StreamSource M a -> M [a] -> Property
checkStreamProducerM = checkStreamProducerM' runM

checkInfiniteProducerM :: (Show a, Eq a) => ConduitT () a M () -> M [a] -> Property
checkInfiniteProducerM = checkInfiniteProducerM' (fst . runM)

checkInfiniteStreamProducerM :: (Show a, Eq a) => StreamSource M a -> M [a] -> Property
checkInfiniteStreamProducerM = checkInfiniteStreamProducerM' (fst . runM)

checkConsumerM :: (Show b, Eq b) => ConduitT Int Void M b -> ([Int] -> M b) -> Property
checkConsumerM  = checkConsumerM' runM

checkStreamConsumerM :: (Show b, Eq b) => StreamConduitT Int o M b -> ([Int] -> M b) -> Property
checkStreamConsumerM  = checkStreamConsumerM' runM

checkConduitT :: (Show a, Arbitrary a, Show b, Eq b) => ConduitT a b M () -> ([a] -> M [b]) -> Property
checkConduitT = checkConduitT' runM

checkStreamConduitT :: (Show a, Arbitrary a, Show b, Eq b) => StreamConduitT a b M () -> ([a] -> M [b]) -> Property
checkStreamConduitT = checkStreamConduitT' runM

-- checkConduitResultM :: (Show a, Arbitrary a, Show b, Eq b, Show r, Eq r) => ConduitT a b M r -> ([a] -> M ([b], r)) -> Property
-- checkConduitResultM = checkConduitResultM' runM

checkStreamConduitResultM :: (Show a, Arbitrary a, Show b, Eq b, Show r, Eq r) => StreamConduitT a b M r -> ([a] -> M ([b], r)) -> Property
checkStreamConduitResultM = checkStreamConduitResultM' runM

--------------------------------------------------------------------------------
-- Quickcheck utilities for monadic streams / conduits
-- These are polymorphic in which Monad is used.

checkProducerM' :: (Show a, Monad m, Show b, Eq b)
                => (m [a] -> b)
                -> ConduitT () a m ()
                -> m [a]
                -> Property
checkProducerM' f c l =
    f (runConduit $ preventFusion c .| sinkList)
    ===
    f l

checkStreamProducerM' :: (Show a, Monad m, Show b, Eq b)
                      => (m [a] -> b)
                      -> StreamConduitT () a m ()
                      -> m [a]
                      -> Property
checkStreamProducerM' f s l =
    f (liftM fst $ evalStream $ s emptyStream)
    ===
    f l

checkInfiniteProducerM' :: (Show a, Monad m, Show b, Eq b)
                        => (m [a] -> b)
                        -> ConduitT () a m ()
                        -> m [a]
                        -> Property
checkInfiniteProducerM' f s l =
    checkProducerM' f
        (preventFusion s .| take 10)
        (liftM (Prelude.take 10) l)

checkInfiniteStreamProducerM' :: (Show a, Monad m, Show b, Eq b)
                              => (m [a] -> b)
                              -> StreamConduitT () a m ()
                              -> m [a]
                              -> Property
checkInfiniteStreamProducerM' f s l =
    f (liftM snd $ evalStream $ takeS 10 $ s emptyStream)
    ===
    f (liftM (Prelude.take 10) l)

checkConsumerM' :: (Show a, Monad m, Show b, Eq b)
                => (m a -> b)
                -> ConduitT Int Void m a
                -> ([Int] -> m a)
                -> Property
checkConsumerM' f c l = forAll arbitrary $ \xs ->
    f (runConduit $ yieldMany xs .| preventFusion c)
    ===
    f (l xs)

checkStreamConsumerM' :: (Show a, Monad m, Show b, Eq b)
                      => (m a -> b)
                      -> StreamConduitT Int o m a
                      -> ([Int] -> m a)
                      -> Property
checkStreamConsumerM' f s l = forAll (arbitrary) $ \xs ->
    f (liftM snd $ evalStream $ s $ sourceListS xs emptyStream)
    ===
    f (l xs)

checkConduitT' :: (Show a, Arbitrary a, Monad m, Show c, Eq c)
               => (m [b] -> c)
               -> ConduitT a b m ()
               -> ([a] -> m [b])
               -> Property
checkConduitT' f c l = forAll arbitrary $ \xs ->
    f (runConduit $ yieldMany xs .| preventFusion c .| sinkList)
    ===
    f (l xs)

checkStreamConduitT' :: (Show a, Arbitrary a, Monad m, Show c, Eq c)
                     =>  (m [b] -> c)
                     -> StreamConduit a m b
                     -> ([a] -> m [b])
                     -> Property
checkStreamConduitT' f s l = forAll arbitrary $ \xs ->
    f (liftM fst $ evalStream $ s $ sourceListS xs emptyStream)
    ===
    f (l xs)

-- TODO: Fixing this would allow comparing conduit sinkListrs against
-- their list versions.
--
-- checkConduitResultM' :: (Show a, Arbitrary a, Monad m, Show c, Eq c)
--                      => (m ([b], r) -> c)
--                      -> ConduitT a b m r
--                      -> ([a] -> m ([b], r))
--                      -> Property
-- checkConduitResultM' f c l = FIXME forAll arbitrary $ \xs ->
--     f (runConduit $ yieldMany xs .| preventFusion c .| sinkList)
--     ===
--     f (l xs)

checkStreamConduitResultM' :: (Show a, Arbitrary a, Monad m, Show c, Eq c)
                           =>  (m ([b], r) -> c)
                           -> StreamConduitT a b m r
                           -> ([a] -> m ([b], r))
                           -> Property
checkStreamConduitResultM' f s l = forAll arbitrary $ \xs ->
    f (evalStream $ s $ sourceListS xs emptyStream)
    ===
    f (l xs)

emptyStream :: Monad m => Stream m () ()
emptyStream = Stream (\_ -> return $ Stop ()) (return ())

evalStream :: Monad m => Stream m o r -> m ([o], r)
evalStream (Stream step s0) = go =<< s0
  where
    go s = do
        res <- step s
        case res of
            Stop r -> return ([], r)
            Skip s' -> go s'
            Emit s' x -> liftM (\(l, r) -> (x:l, r)) (go s')

--------------------------------------------------------------------------------
-- Misc utilities

-- Prefer this to creating an orphan instance for Data.Monoid.Sum:

newtype Sum a = Sum a
  deriving (Eq, Show, Arbitrary)

instance Prelude.Num a => Semigroup (Sum a) where
  Sum x <> Sum y = Sum $ x Prelude.+ y
instance Prelude.Num a => Monoid (Sum a) where
  mempty = Sum 0
  mappend (Sum x) (Sum y) = Sum $ x Prelude.+ y

preventFusion :: a -> a
preventFusion = id
{-# INLINE [0] preventFusion #-}

newtype M a = M (StateT Int Identity a)
  deriving (Functor, Applicative, Monad)

instance Arbitrary a => Arbitrary (M a) where
    arbitrary = do
        f <- arbitrary
        return $ do
            s <- M get
            let (x, s') = f s
            M (put s')
            return x

runM :: M a -> (a, Int)
runM (M m) = runIdentity $ runStateT m 0

--------------------------------------------------------------------------------
-- Utilities from QuickCheck-2.7 (absent in earlier versions)

#if !MIN_VERSION_QuickCheck(2,7,0)
getBlind :: Blind a -> a
getBlind (Blind x) = x

-- | @Small x@: generates values of @x@ drawn from a small range.
-- The opposite of 'Large'.
newtype Small a = Small {getSmall :: a}
    deriving (Prelude.Ord, Prelude.Eq, Prelude.Enum, Prelude.Show, Prelude.Num)

instance Prelude.Integral a => Arbitrary (Small a) where
    arbitrary = Prelude.fmap Small arbitrarySizedIntegral
    shrink (Small x) = Prelude.map Small (shrinkIntegral x)

(===) :: (Show a, Eq a) => a -> a -> Property
x === y = whenFail
    (Prelude.fail $ Prelude.show x Prelude.++ " should match " Prelude.++ Prelude.show y)
    (x Prelude.== y)
#endif