1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
#ifdef __GLASGOW_HASKELL__
#define LANGUAGE_DeriveDataTypeable
{-# LANGUAGE DeriveDataTypeable #-}
#endif
#ifndef MIN_VERSION_tagged
#define MIN_VERSION_tagged(x,y,z) 1
#endif
#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif
#if __GLASGOW_HASKELL__ >= 704
{-# LANGUAGE Safe #-}
#elif __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#if !(MIN_VERSION_transformers(0,6,0))
{-# OPTIONS_GHC -fno-warn-deprecations #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Data.Functor.Contravariant
-- Copyright : (C) 2007-2015 Edward Kmett
-- License : BSD-style (see the file LICENSE)
--
-- Maintainer : Edward Kmett <ekmett@gmail.com>
-- Stability : provisional
-- Portability : portable
--
-- 'Contravariant' functors, sometimes referred to colloquially as @Cofunctor@,
-- even though the dual of a 'Functor' is just a 'Functor'. As with 'Functor'
-- the definition of 'Contravariant' for a given ADT is unambiguous.
----------------------------------------------------------------------------
module Data.Functor.Contravariant (
-- * Contravariant Functors
Contravariant(..)
, phantom
-- * Operators
, (>$<), (>$$<), ($<)
-- * Predicates
, Predicate(..)
-- * Comparisons
, Comparison(..)
, defaultComparison
-- * Equivalence Relations
, Equivalence(..)
, defaultEquivalence
, comparisonEquivalence
-- * Dual arrows
, Op(..)
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Category
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import Control.Monad.Trans.Reader
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Function (on)
import Data.Functor.Product
import Data.Functor.Sum
import Data.Functor.Constant
import Data.Functor.Compose
import Data.Functor.Reverse
#if !(MIN_VERSION_transformers(0,6,0))
import Control.Monad.Trans.Error
import Control.Monad.Trans.List
#endif
#if MIN_VERSION_base(4,8,0)
import Data.Monoid (Alt(..))
#else
import Data.Monoid (Monoid(..))
#endif
#if defined(MIN_VERSION_semigroups) || __GLASGOW_HASKELL__ >= 711
import Data.Semigroup (Semigroup(..))
#endif
#ifdef LANGUAGE_DeriveDataTypeable
import Data.Typeable
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 707 && defined(VERSION_tagged)
import Data.Proxy
#endif
#ifdef MIN_VERSION_StateVar
import Data.StateVar
#endif
#if __GLASGOW_HASKELL__ >= 702
#define GHC_GENERICS
import GHC.Generics
#endif
import Prelude hiding ((.),id)
-- | The class of contravariant functors.
--
-- Whereas in Haskell, one can think of a 'Functor' as containing or producing
-- values, a contravariant functor is a functor that can be thought of as
-- /consuming/ values.
--
-- As an example, consider the type of predicate functions @a -> Bool@. One
-- such predicate might be @negative x = x < 0@, which
-- classifies integers as to whether they are negative. However, given this
-- predicate, we can re-use it in other situations, providing we have a way to
-- map values /to/ integers. For instance, we can use the @negative@ predicate
-- on a person's bank balance to work out if they are currently overdrawn:
--
-- @
-- newtype Predicate a = Predicate { getPredicate :: a -> Bool }
--
-- instance Contravariant Predicate where
-- contramap f (Predicate p) = Predicate (p . f)
-- | `- First, map the input...
-- `----- then apply the predicate.
--
-- overdrawn :: Predicate Person
-- overdrawn = contramap personBankBalance negative
-- @
--
-- Any instance should be subject to the following laws:
--
-- > contramap id = id
-- > contramap f . contramap g = contramap (g . f)
--
-- Note, that the second law follows from the free theorem of the type of
-- 'contramap' and the first law, so you need only check that the former
-- condition holds.
class Contravariant f where
contramap :: (a -> b) -> f b -> f a
-- | Replace all locations in the output with the same value.
-- The default definition is @'contramap' . 'const'@, but this may be
-- overridden with a more efficient version.
(>$) :: b -> f b -> f a
(>$) = contramap . const
-- | If 'f' is both 'Functor' and 'Contravariant' then by the time you factor in the laws
-- of each of those classes, it can't actually use its argument in any meaningful capacity.
--
-- This method is surprisingly useful. Where both instances exist and are lawful we have
-- the following laws:
--
-- @
-- 'fmap' f ≡ 'phantom'
-- 'contramap' f ≡ 'phantom'
-- @
phantom :: (Functor f, Contravariant f) => f a -> f b
phantom x = () <$ x $< ()
infixl 4 >$, $<, >$<, >$$<
-- | This is '>$' with its arguments flipped.
($<) :: Contravariant f => f b -> b -> f a
($<) = flip (>$)
{-# INLINE ($<) #-}
-- | This is an infix alias for 'contramap'.
(>$<) :: Contravariant f => (a -> b) -> f b -> f a
(>$<) = contramap
{-# INLINE (>$<) #-}
-- | This is an infix version of 'contramap' with the arguments flipped.
(>$$<) :: Contravariant f => f b -> (a -> b) -> f a
(>$$<) = flip contramap
{-# INLINE (>$$<) #-}
#if MIN_VERSION_base(4,8,0)
instance Contravariant f => Contravariant (Alt f) where
contramap f = Alt . contramap f . getAlt
#endif
#ifdef GHC_GENERICS
instance Contravariant V1 where
contramap _ x = x `seq` undefined
instance Contravariant U1 where
contramap _ _ = U1
instance Contravariant f => Contravariant (Rec1 f) where
contramap f (Rec1 fp)= Rec1 (contramap f fp)
instance Contravariant f => Contravariant (M1 i c f) where
contramap f (M1 fp) = M1 (contramap f fp)
instance Contravariant (K1 i c) where
contramap _ (K1 c) = K1 c
instance (Contravariant f, Contravariant g) => Contravariant (f :*: g) where
contramap f (xs :*: ys) = contramap f xs :*: contramap f ys
instance (Functor f, Contravariant g) => Contravariant (f :.: g) where
contramap f (Comp1 fg) = Comp1 (fmap (contramap f) fg)
{-# INLINE contramap #-}
instance (Contravariant f, Contravariant g) => Contravariant (f :+: g) where
contramap f (L1 xs) = L1 (contramap f xs)
contramap f (R1 ys) = R1 (contramap f ys)
#endif
instance Contravariant m => Contravariant (ExceptT e m) where
contramap f = ExceptT . contramap (fmap f) . runExceptT
instance Contravariant f => Contravariant (IdentityT f) where
contramap f = IdentityT . contramap f . runIdentityT
instance Contravariant m => Contravariant (MaybeT m) where
contramap f = MaybeT . contramap (fmap f) . runMaybeT
instance Contravariant m => Contravariant (Lazy.RWST r w s m) where
contramap f m = Lazy.RWST $ \r s ->
contramap (\ ~(a, s', w) -> (f a, s', w)) $ Lazy.runRWST m r s
instance Contravariant m => Contravariant (Strict.RWST r w s m) where
contramap f m = Strict.RWST $ \r s ->
contramap (\ (a, s', w) -> (f a, s', w)) $ Strict.runRWST m r s
instance Contravariant m => Contravariant (ReaderT r m) where
contramap f = ReaderT . fmap (contramap f) . runReaderT
instance Contravariant m => Contravariant (Lazy.StateT s m) where
contramap f m = Lazy.StateT $ \s ->
contramap (\ ~(a, s') -> (f a, s')) $ Lazy.runStateT m s
instance Contravariant m => Contravariant (Strict.StateT s m) where
contramap f m = Strict.StateT $ \s ->
contramap (\ (a, s') -> (f a, s')) $ Strict.runStateT m s
instance Contravariant m => Contravariant (Lazy.WriterT w m) where
contramap f = Lazy.mapWriterT $ contramap $ \ ~(a, w) -> (f a, w)
instance Contravariant m => Contravariant (Strict.WriterT w m) where
contramap f = Strict.mapWriterT $ contramap $ \ (a, w) -> (f a, w)
instance (Contravariant f, Contravariant g) => Contravariant (Sum f g) where
contramap f (InL xs) = InL (contramap f xs)
contramap f (InR ys) = InR (contramap f ys)
instance (Contravariant f, Contravariant g) => Contravariant (Product f g) where
contramap f (Pair a b) = Pair (contramap f a) (contramap f b)
instance Contravariant (Constant a) where
contramap _ (Constant a) = Constant a
instance Contravariant (Const a) where
contramap _ (Const a) = Const a
instance (Functor f, Contravariant g) => Contravariant (Compose f g) where
contramap f (Compose fga) = Compose (fmap (contramap f) fga)
{-# INLINE contramap #-}
instance Contravariant f => Contravariant (Backwards f) where
contramap f = Backwards . contramap f . forwards
{-# INLINE contramap #-}
instance Contravariant f => Contravariant (Reverse f) where
contramap f = Reverse . contramap f . getReverse
{-# INLINE contramap #-}
#if !(MIN_VERSION_transformers(0,6,0))
instance Contravariant m => Contravariant (ErrorT e m) where
contramap f = ErrorT . contramap (fmap f) . runErrorT
instance Contravariant m => Contravariant (ListT m) where
contramap f = ListT . contramap (fmap f) . runListT
#endif
#ifdef MIN_VERSION_StateVar
instance Contravariant SettableStateVar where
contramap f (SettableStateVar k) = SettableStateVar (k . f)
{-# INLINE contramap #-}
#endif
#if (__GLASGOW_HASKELL__ >= 707) || defined(VERSION_tagged)
instance Contravariant Proxy where
contramap _ _ = Proxy
#endif
newtype Predicate a = Predicate { getPredicate :: a -> Bool }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
-- | A 'Predicate' is a 'Contravariant' 'Functor', because 'contramap' can
-- apply its function argument to the input of the predicate.
instance Contravariant Predicate where
contramap f g = Predicate $ getPredicate g . f
#if defined(MIN_VERSION_semigroups) || __GLASGOW_HASKELL__ >= 711
instance Semigroup (Predicate a) where
Predicate p <> Predicate q = Predicate $ \a -> p a && q a
#endif
instance Monoid (Predicate a) where
mempty = Predicate $ const True
#if defined(MIN_VERSION_semigroups) || __GLASGOW_HASKELL__ >= 711
mappend = (<>)
#else
mappend (Predicate p) (Predicate q) = Predicate $ \a -> p a && q a
#endif
-- | Defines a total ordering on a type as per 'compare'.
--
-- This condition is not checked by the types. You must ensure that the supplied
-- values are valid total orderings yourself.
newtype Comparison a = Comparison { getComparison :: a -> a -> Ordering }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
-- | A 'Comparison' is a 'Contravariant' 'Functor', because 'contramap' can
-- apply its function argument to each input of the comparison function.
instance Contravariant Comparison where
contramap f g = Comparison $ on (getComparison g) f
#if defined(MIN_VERSION_semigroups) || __GLASGOW_HASKELL__ >= 711
instance Semigroup (Comparison a) where
Comparison p <> Comparison q = Comparison $ mappend p q
#endif
instance Monoid (Comparison a) where
mempty = Comparison (\_ _ -> EQ)
mappend (Comparison p) (Comparison q) = Comparison $ mappend p q
-- | Compare using 'compare'.
defaultComparison :: Ord a => Comparison a
defaultComparison = Comparison compare
-- | This data type represents an equivalence relation.
--
-- Equivalence relations are expected to satisfy three laws:
--
-- __Reflexivity__:
--
-- @
-- 'getEquivalence' f a a = True
-- @
--
-- __Symmetry__:
--
-- @
-- 'getEquivalence' f a b = 'getEquivalence' f b a
-- @
--
-- __Transitivity__:
--
-- If @'getEquivalence' f a b@ and @'getEquivalence' f b c@ are both 'True' then so is @'getEquivalence' f a c@
--
-- The types alone do not enforce these laws, so you'll have to check them yourself.
newtype Equivalence a = Equivalence { getEquivalence :: a -> a -> Bool }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
-- | Equivalence relations are 'Contravariant', because you can
-- apply the contramapped function to each input to the equivalence
-- relation.
instance Contravariant Equivalence where
contramap f g = Equivalence $ on (getEquivalence g) f
#if defined(MIN_VERSION_semigroups) || __GLASGOW_HASKELL__ >= 711
instance Semigroup (Equivalence a) where
Equivalence p <> Equivalence q = Equivalence $ \a b -> p a b && q a b
#endif
instance Monoid (Equivalence a) where
mempty = Equivalence (\_ _ -> True)
mappend (Equivalence p) (Equivalence q) = Equivalence $ \a b -> p a b && q a b
-- | Check for equivalence with '=='.
--
-- Note: The instances for 'Double' and 'Float' violate reflexivity for @NaN@.
defaultEquivalence :: Eq a => Equivalence a
defaultEquivalence = Equivalence (==)
comparisonEquivalence :: Comparison a -> Equivalence a
comparisonEquivalence (Comparison p) = Equivalence $ \a b -> p a b == EQ
-- | Dual function arrows.
newtype Op a b = Op { getOp :: b -> a }
#ifdef LANGUAGE_DeriveDataTypeable
deriving Typeable
#endif
instance Category Op where
id = Op id
Op f . Op g = Op (g . f)
instance Contravariant (Op a) where
contramap f g = Op (getOp g . f)
#if defined(MIN_VERSION_semigroups) || __GLASGOW_HASKELL__ >= 711
instance Semigroup a => Semigroup (Op a b) where
Op p <> Op q = Op $ \a -> p a <> q a
#endif
instance Monoid a => Monoid (Op a b) where
mempty = Op (const mempty)
mappend (Op p) (Op q) = Op $ \a -> mappend (p a) (q a)
#if MIN_VERSION_base(4,5,0)
instance Num a => Num (Op a b) where
Op f + Op g = Op $ \a -> f a + g a
Op f * Op g = Op $ \a -> f a * g a
Op f - Op g = Op $ \a -> f a - g a
abs (Op f) = Op $ abs . f
signum (Op f) = Op $ signum . f
fromInteger = Op . const . fromInteger
instance Fractional a => Fractional (Op a b) where
Op f / Op g = Op $ \a -> f a / g a
recip (Op f) = Op $ recip . f
fromRational = Op . const . fromRational
instance Floating a => Floating (Op a b) where
pi = Op $ const pi
exp (Op f) = Op $ exp . f
sqrt (Op f) = Op $ sqrt . f
log (Op f) = Op $ log . f
sin (Op f) = Op $ sin . f
tan (Op f) = Op $ tan . f
cos (Op f) = Op $ cos . f
asin (Op f) = Op $ asin . f
atan (Op f) = Op $ atan . f
acos (Op f) = Op $ acos . f
sinh (Op f) = Op $ sinh . f
tanh (Op f) = Op $ tanh . f
cosh (Op f) = Op $ cosh . f
asinh (Op f) = Op $ asinh . f
atanh (Op f) = Op $ atanh . f
acosh (Op f) = Op $ acosh . f
Op f ** Op g = Op $ \a -> f a ** g a
logBase (Op f) (Op g) = Op $ \a -> logBase (f a) (g a)
#endif
|