1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE BangPatterns, DeriveDataTypeable, RecordWildCards #-}
-- |
-- Module : Criterion.Analysis
-- Copyright : (c) 2009-2014 Bryan O'Sullivan
--
-- License : BSD-style
-- Maintainer : bos@serpentine.com
-- Stability : experimental
-- Portability : GHC
--
-- Analysis code for benchmarks.
module Criterion.Analysis
(
Outliers(..)
, OutlierEffect(..)
, OutlierVariance(..)
, SampleAnalysis(..)
, analyseSample
, scale
, analyseMean
, countOutliers
, classifyOutliers
, noteOutliers
, outlierVariance
, resolveAccessors
, validateAccessors
, regress
) where
import Control.Arrow (second)
import Control.Monad (unless, when)
import Control.Monad.Reader (ask)
import Control.Monad.Trans
import Control.Monad.Trans.Except
import Criterion.IO.Printf (note, prolix)
import Criterion.Measurement (secs, threshold)
import Criterion.Monad (Criterion, getGen)
import Criterion.Types
import Data.Int (Int64)
import Data.List.NonEmpty (NonEmpty(..))
import Data.Maybe (fromJust)
import Prelude ()
import Prelude.Compat
import Statistics.Function (sort)
import Statistics.Quantile (weightedAvg)
import Statistics.Regression (bootstrapRegress, olsRegress)
import Statistics.Resampling (Estimator(..),resample)
import Statistics.Sample (mean)
import Statistics.Sample.KernelDensity (kde)
import Statistics.Types (Sample)
import System.Random.MWC (GenIO)
import qualified Data.List as List
import qualified Data.List.NonEmpty as NE
import qualified Data.Map as Map
import qualified Data.Vector as V
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as U
import qualified Statistics.Resampling.Bootstrap as B
import qualified Statistics.Types as B
-- | Classify outliers in a data set, using the boxplot technique.
classifyOutliers :: Sample -> Outliers
classifyOutliers sa = U.foldl' ((. outlier) . mappend) mempty ssa
where outlier e = Outliers {
samplesSeen = 1
, lowSevere = if e <= loS && e < hiM then 1 else 0
, lowMild = if e > loS && e <= loM then 1 else 0
, highMild = if e >= hiM && e < hiS then 1 else 0
, highSevere = if e >= hiS && e > loM then 1 else 0
}
!loS = q1 - (iqr * 3)
!loM = q1 - (iqr * 1.5)
!hiM = q3 + (iqr * 1.5)
!hiS = q3 + (iqr * 3)
q1 = weightedAvg 1 4 ssa
q3 = weightedAvg 3 4 ssa
ssa = sort sa
iqr = q3 - q1
-- | Compute the extent to which outliers in the sample data affect
-- the sample mean and standard deviation.
outlierVariance
:: B.Estimate B.ConfInt Double -- ^ Bootstrap estimate of sample mean.
-> B.Estimate B.ConfInt Double -- ^ Bootstrap estimate of sample
-- standard deviation.
-> Double -- ^ Number of original iterations.
-> OutlierVariance
outlierVariance µ σ a = OutlierVariance effect desc varOutMin
where
( effect, desc ) | varOutMin < 0.01 = (Unaffected, "no")
| varOutMin < 0.1 = (Slight, "a slight")
| varOutMin < 0.5 = (Moderate, "a moderate")
| otherwise = (Severe, "a severe")
varOutMin = (minBy varOut 1 (minBy cMax 0 µgMin)) / σb2
varOut c = (ac / a) * (σb2 - ac * σg2) where ac = a - c
σb = B.estPoint σ
µa = B.estPoint µ / a
µgMin = µa / 2
σg = min (µgMin / 4) (σb / sqrt a)
σg2 = σg * σg
σb2 = σb * σb
minBy f q r = min (f q) (f r)
cMax x = fromIntegral (floor (-2 * k0 / (k1 + sqrt det)) :: Int)
where
k1 = σb2 - a * σg2 + ad
k0 = -a * ad
ad = a * d
d = k * k where k = µa - x
det = k1 * k1 - 4 * σg2 * k0
-- | Count the total number of outliers in a sample.
countOutliers :: Outliers -> Int64
countOutliers (Outliers _ a b c d) = a + b + c + d
{-# INLINE countOutliers #-}
-- | Display the mean of a 'Sample', and characterise the outliers
-- present in the sample.
analyseMean :: Sample
-> Int -- ^ Number of iterations used to
-- compute the sample.
-> Criterion Double
analyseMean a iters = do
let µ = mean a
_ <- note "mean is %s (%d iterations)\n" (secs µ) iters
noteOutliers . classifyOutliers $ a
return µ
-- | Multiply the 'Estimate's in an analysis by the given value, using
-- 'B.scale'.
scale :: Double -- ^ Value to multiply by.
-> SampleAnalysis -> SampleAnalysis
scale f s@SampleAnalysis{..} = s {
anMean = B.scale f anMean
, anStdDev = B.scale f anStdDev
}
-- | Perform an analysis of a measurement.
analyseSample :: Int -- ^ Experiment number.
-> String -- ^ Experiment name.
-> V.Vector Measured -- ^ Sample data.
-> ExceptT String Criterion Report
analyseSample i name meas = do
Config{..} <- ask
let ests = [Mean,StdDev]
-- The use of filter here throws away very-low-quality
-- measurements when bootstrapping the mean and standard
-- deviations. Without this, the numbers look nonsensical when
-- very brief actions are measured.
stime = measure (measTime . rescale) .
G.filter ((>= threshold) . measTime) $ meas
n = G.length meas
s = G.length stime
_ <- lift $ prolix "bootstrapping with %d of %d samples (%d%%)\n"
s n ((s * 100) `quot` n)
gen <- lift getGen
rs <- mapM (\(ps,r) -> regress gen ps r meas) $
((["iters"],"time"):regressions)
resamps <- liftIO $ resample gen ests resamples stime
(estMean,estStdDev) <- case B.bootstrapBCA confInterval stime resamps of
[estMean',estStdDev'] -> return (estMean',estStdDev')
ests' -> throwE $ "analyseSample: Expected two estimation functions, received: " ++ show ests'
let ov = outlierVariance estMean estStdDev (fromIntegral n)
an = SampleAnalysis {
anRegress = rs
, anMean = estMean
, anStdDev = estStdDev
, anOutlierVar = ov
}
return Report {
reportNumber = i
, reportName = name
, reportKeys = measureKeys
, reportMeasured = meas
, reportAnalysis = an
, reportOutliers = classifyOutliers stime
, reportKDEs = [uncurry (KDE "time") (kde 128 stime)]
}
-- | Regress the given predictors against the responder.
--
-- Errors may be returned under various circumstances, such as invalid
-- names or lack of needed data.
--
-- See 'olsRegress' for details of the regression performed.
regress :: GenIO
-> [String] -- ^ Predictor names.
-> String -- ^ Responder name.
-> V.Vector Measured
-> ExceptT String Criterion Regression
regress gen predNames respName meas = do
when (G.null meas) $
throwE "no measurements"
accs <- ExceptT . return $ validateAccessors predNames respName
let unmeasured = [n | (n, Nothing) <- map (second ($ G.head meas)) accs]
unless (null unmeasured) $
throwE $ "no data available for " ++ renderNames unmeasured
(r,ps) <- case map ((`measure` meas) . (fromJust .) . snd) accs of
(r':ps') -> return (r',ps')
[] -> throwE "regress: Expected at least one accessor"
Config{..} <- ask
(coeffs,r2) <- liftIO $
bootstrapRegress gen resamples confInterval olsRegress ps r
return Regression {
regResponder = respName
, regCoeffs = Map.fromList (zip (predNames ++ ["y"]) (G.toList coeffs))
, regRSquare = r2
}
singleton :: NonEmpty a -> Bool
singleton (_ :| []) = True
singleton _ = False
-- | Given a list of accessor names (see 'measureKeys'), return either
-- a mapping from accessor name to function or an error message if
-- any names are wrong.
resolveAccessors :: [String]
-> Either String [(String, Measured -> Maybe Double)]
resolveAccessors names =
case unresolved of
[] -> Right [(n, a) | (n, Just (a,_)) <- accessors]
_ -> Left $ "unknown metric " ++ renderNames unresolved
where
unresolved = [n | (n, Nothing) <- accessors]
accessors = flip map names $ \n -> (n, Map.lookup n measureAccessors)
-- | Given predictor and responder names, do some basic validation,
-- then hand back the relevant accessors.
validateAccessors :: [String] -- ^ Predictor names.
-> String -- ^ Responder name.
-> Either String [(String, Measured -> Maybe Double)]
validateAccessors predNames respName = do
when (null predNames) $
Left "no predictors specified"
let names = respName:predNames
dups = map NE.head . List.filter (not . singleton) .
NE.group . List.sort $ names
unless (null dups) $
Left $ "duplicated metric " ++ renderNames dups
resolveAccessors names
renderNames :: [String] -> String
renderNames = List.intercalate ", " . map show
-- | Display a report of the 'Outliers' present in a 'Sample'.
noteOutliers :: Outliers -> Criterion ()
noteOutliers o = do
let frac n = (100::Double) * fromIntegral n / fromIntegral (samplesSeen o)
check :: Int64 -> Double -> String -> Criterion ()
check k t d = when (frac k > t) $
note " %d (%.1g%%) %s\n" k (frac k) d
outCount = countOutliers o
when (outCount > 0) $ do
_ <- note "found %d outliers among %d samples (%.1g%%)\n"
outCount (samplesSeen o) (frac outCount)
check (lowSevere o) 0 "low severe"
check (lowMild o) 1 "low mild"
check (highMild o) 1 "high mild"
check (highSevere o) 0 "high severe"
|