1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
|
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}
{-# LANGUAGE ParallelListComp #-}
{-|
Maintainer: Thomas.DuBuisson@gmail.com
Stability: beta
Portability: portable
This is the heart of the crypto-api package. By making (or having)
an instance of Hash, AsymCipher, BlockCipher or StreamCipher you provide (or obtain)
access to any infrastructure built on these primitives include block cipher modes
of operation, hashing, hmac, signing, etc. These classes allow users to build
routines that are agnostic to the algorithm used so changing algorithms is as simple
as changing a type signature.
-}
module Crypto.Classes
(
-- * Hash class and helper functions
Hash(..)
, hashFunc'
, hashFunc
-- * Cipher classes and helper functions
, BlockCipher(..)
, blockSizeBytes
, keyLengthBytes
, buildKeyIO
, buildKeyGen
, StreamCipher(..)
, buildStreamKeyIO
, buildStreamKeyGen
, AsymCipher(..)
, buildKeyPairIO
, buildKeyPairGen
, Signing(..)
, buildSigningKeyPairIO
, buildSigningKeyPairGen
-- * Misc helper functions
, encode
, zeroIV
, incIV
, getIV, getIVIO
, chunkFor, chunkFor'
, module Crypto.Util
, module Crypto.Types
) where
import Data.Data
import Data.Typeable
import Data.Serialize
import qualified Data.Serialize.Get as SG
import qualified Data.Serialize.Put as SP
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString as B
import qualified Data.ByteString.Internal as I
import Data.ByteString.Unsafe (unsafeUseAsCStringLen)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.State (StateT(..), runStateT)
import Control.Monad (liftM)
import Data.Bits
import Data.List (foldl', genericDrop)
import Data.Word (Word8, Word16, Word64)
import Data.Tagged
import Data.Proxy
import Crypto.Types
import Crypto.Random
import Crypto.Util
import System.IO.Unsafe (unsafePerformIO)
import Foreign (Ptr)
import Foreign.C (CChar(..), CInt(..))
import System.Entropy
import {-# SOURCE #-} Crypto.Modes
-- |The Hash class is intended as the generic interface
-- targeted by maintainers of Haskell digest implementations.
-- Using this generic interface, higher level functions
-- such as 'hash' and 'hash'' provide a useful API
-- for comsumers of hash implementations.
--
-- Any instantiated implementation must handle unaligned data.
--
-- Minimum complete definition: 'outputLength', 'blockLength', 'initialCtx',
-- 'updateCtx', and 'finalize'.
class (Serialize d, Eq d, Ord d)
=> Hash ctx d | d -> ctx, ctx -> d where
outputLength :: Tagged d BitLength -- ^ The size of the digest when encoded
blockLength :: Tagged d BitLength -- ^ The amount of data operated on in each round of the digest computation
initialCtx :: ctx -- ^ An initial context, provided with the first call to 'updateCtx'
updateCtx :: ctx -> B.ByteString -> ctx -- ^ Used to update a context, repeatedly called until all data is exhausted
-- must operate correctly for imputs of @n*blockLength@ bytes for @n `elem` [0..]@
finalize :: ctx -> B.ByteString -> d -- ^ Finializing a context, plus any message data less than the block size, into a digest
-- |Hash a lazy ByteString, creating a digest
hash :: (Hash ctx d) => L.ByteString -> d
hash msg = res
where
res = finalize ctx end
ctx = foldl' updateCtx initialCtx blks
(blks,end) = makeBlocks msg blockLen
blockLen = (blockLength .::. res) `div` 8
-- |Hash a strict ByteString, creating a digest
hash' :: (Hash ctx d) => B.ByteString -> d
hash' msg = res
where
res = finalize (updateCtx initialCtx top) end
(top, end) = B.splitAt remlen msg
remlen = B.length msg - (B.length msg `rem` bLen)
bLen = blockLength `for` res `div` 8
-- |Obtain a lazy hash function whose result is the same type
-- as the given digest, which is discarded. If the type is already inferred then
-- consider using the 'hash' function instead.
hashFunc :: Hash c d => d -> (L.ByteString -> d)
hashFunc d = f
where
f = hash
a = f undefined `asTypeOf` d
-- |Obtain a strict hash function whose result is the same type
-- as the given digest, which is discarded. If the type is already inferred then
-- consider using the 'hash'' function instead.
hashFunc' :: Hash c d => d -> (B.ByteString -> d)
hashFunc' d = f
where
f = hash'
a = f undefined `asTypeOf` d
{-# INLINABLE makeBlocks #-}
makeBlocks :: L.ByteString -> ByteLength -> ([B.ByteString], B.ByteString)
makeBlocks msg len = go (L.toChunks msg)
where
go [] = ([],B.empty)
go (x:xs)
| B.length x >= len =
let l = B.length x - B.length x `rem` len
(top,end) = B.splitAt l x
(rest,trueEnd) = go (end:xs)
in (top:rest, trueEnd)
| otherwise =
case xs of
[] -> ([], x)
(a:as) -> go (B.append x a : as)
-- |The BlockCipher class is intended as the generic interface
-- targeted by maintainers of Haskell cipher implementations.
--
-- Minimum complete definition: blockSize, encryptBlock, decryptBlock,
-- buildKey, and keyLength.
--
-- Instances must handle unaligned data
class ( Serialize k) => BlockCipher k where
blockSize :: Tagged k BitLength -- ^ The size of a single block; the smallest unit on which the cipher operates.
encryptBlock :: k -> B.ByteString -> B.ByteString -- ^ encrypt data of size @n*blockSize@ where @n `elem` [0..]@ (ecb encryption)
decryptBlock :: k -> B.ByteString -> B.ByteString -- ^ decrypt data of size @n*blockSize@ where @n `elem` [0..]@ (ecb decryption)
buildKey :: B.ByteString -> Maybe k -- ^ smart constructor for keys from a bytestring.
keyLength :: Tagged k BitLength -- ^ length of the cryptographic key
-- * Modes of operation over strict bytestrings
-- | Electronic Cookbook (encryption)
ecb :: k -> B.ByteString -> B.ByteString
ecb = modeEcb'
-- | Electronic Cookbook (decryption)
unEcb :: k -> B.ByteString -> B.ByteString
unEcb = modeUnEcb'
-- | Cipherblock Chaining (encryption)
cbc :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
cbc = modeCbc'
-- | Cipherblock Chaining (decryption)
unCbc :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
unCbc = modeUnCbc'
-- | Counter (encryption)
ctr :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
ctr = modeCtr' incIV
-- | Counter (decryption)
unCtr :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
unCtr = modeUnCtr' incIV
-- | Counter (encryption)
ctrLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
ctrLazy = modeCtr incIV
-- | Counter (decryption)
unCtrLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
unCtrLazy = modeUnCtr incIV
-- | Ciphertext feedback (encryption)
cfb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
cfb = modeCfb'
-- | Ciphertext feedback (decryption)
unCfb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
unCfb = modeUnCfb'
-- | Output feedback (encryption)
ofb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
ofb = modeOfb'
-- | Output feedback (decryption)
unOfb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k)
unOfb = modeUnOfb'
-- |Cipher block chaining encryption for lazy bytestrings
cbcLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
cbcLazy = modeCbc
-- |Cipher block chaining decryption for lazy bytestrings
unCbcLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
unCbcLazy = modeUnCbc
-- |SIV (Synthetic IV) mode for lazy bytestrings. The third argument is
-- the optional list of bytestrings to be authenticated but not
-- encrypted As required by the specification this algorithm may
-- return nothing when certain constraints aren't met.
sivLazy :: k -> k -> [L.ByteString] -> L.ByteString -> Maybe L.ByteString
sivLazy = modeSiv
-- |SIV (Synthetic IV) for lazy bytestrings. The third argument is the
-- optional list of bytestrings to be authenticated but not encrypted.
-- As required by the specification this algorithm may return nothing
-- when authentication fails.
unSivLazy :: k -> k -> [L.ByteString] -> L.ByteString -> Maybe L.ByteString
unSivLazy = modeUnSiv
-- |SIV (Synthetic IV) mode for strict bytestrings. First argument is
-- the optional list of bytestrings to be authenticated but not
-- encrypted. As required by the specification this algorithm may
-- return nothing when certain constraints aren't met.
siv :: k -> k -> [B.ByteString] -> B.ByteString -> Maybe B.ByteString
siv = modeSiv'
-- |SIV (Synthetic IV) for strict bytestrings First argument is the
-- optional list of bytestrings to be authenticated but not encrypted
-- As required by the specification this algorithm may return nothing
-- when authentication fails.
unSiv :: k -> k -> [B.ByteString] -> B.ByteString -> Maybe B.ByteString
unSiv = modeUnSiv'
-- |Cook book mode - not really a mode at all. If you don't know what you're doing, don't use this mode^H^H^H^H library.
ecbLazy :: k -> L.ByteString -> L.ByteString
ecbLazy = modeEcb
-- |ECB decrypt, complementary to `ecb`.
unEcbLazy :: k -> L.ByteString -> L.ByteString
unEcbLazy = modeUnEcb
-- |Ciphertext feed-back encryption mode for lazy bytestrings (with s
-- == blockSize)
cfbLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
cfbLazy = modeCfb
-- |Ciphertext feed-back decryption mode for lazy bytestrings (with s
-- == blockSize)
unCfbLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
unCfbLazy = modeUnCfb
-- |Output feedback mode for lazy bytestrings
ofbLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
ofbLazy = modeOfb
-- |Output feedback mode for lazy bytestrings
unOfbLazy :: k -> IV k -> L.ByteString -> (L.ByteString, IV k)
unOfbLazy = modeUnOfb
-- |Output feedback mode for lazy bytestrings
modeOfb :: BlockCipher k => k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeOfb = modeUnOfb
{-# INLINEABLE modeOfb #-}
-- |Output feedback mode for lazy bytestrings
modeUnOfb :: BlockCipher k => k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeUnOfb k (IV iv) msg =
let ivStr = drop 1 (iterate (encryptBlock k) iv)
ivLen = fromIntegral (B.length iv)
newIV = IV . B.concat . L.toChunks . L.take ivLen . L.drop (L.length msg) . L.fromChunks $ ivStr
in (zwp (L.fromChunks ivStr) msg, newIV)
{-# INLINEABLE modeUnOfb #-}
-- |Ciphertext feed-back encryption mode for lazy bytestrings (with s
-- == blockSize)
modeCfb :: BlockCipher k => k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeCfb k (IV v) msg =
let blks = chunkFor k msg
(cs,ivF) = go v blks
in (L.fromChunks cs, IV ivF)
where
go iv [] = ([],iv)
go iv (b:bs) =
let c = zwp' (encryptBlock k iv) b
(cs,ivFinal) = go c bs
in (c:cs, ivFinal)
{-# INLINEABLE modeCfb #-}
-- |Ciphertext feed-back decryption mode for lazy bytestrings (with s
-- == blockSize)
modeUnCfb :: BlockCipher k => k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeUnCfb k (IV v) msg =
let blks = chunkFor k msg
(ps, ivF) = go v blks
in (L.fromChunks ps, IV ivF)
where
go iv [] = ([], iv)
go iv (b:bs) =
let p = zwp' (encryptBlock k iv) b
(ps, ivF) = go b bs
in (p:ps, ivF)
{-# INLINEABLE modeUnCfb #-}
-- |Obtain an `IV` using the provided CryptoRandomGenerator.
getIV :: (BlockCipher k, CryptoRandomGen g) => g -> Either GenError (IV k, g)
getIV g =
let bytes = ivBlockSizeBytes iv
gen = genBytes bytes g
fromRight (Right x) = x
iv = IV (fst . fromRight $ gen)
in case gen of
Left err -> Left err
Right (bs,g')
| B.length bs == bytes -> Right (iv, g')
| otherwise -> Left (GenErrorOther "Generator failed to provide requested number of bytes")
{-# INLINEABLE getIV #-}
-- | Obtain an 'IV' using the system entropy (see 'System.Entropy')
getIVIO :: (BlockCipher k) => IO (IV k)
getIVIO = do
let p = Proxy
getTypedIV :: BlockCipher k => Proxy k -> IO (IV k)
getTypedIV pr = liftM IV (getEntropy (proxy blockSize pr `div` 8))
iv <- getTypedIV p
return (iv `asProxyTypeOf` ivProxy p)
{-# INLINEABLE getIVIO #-}
ivProxy :: Proxy k -> Proxy (IV k)
ivProxy = const Proxy
deIVProxy :: Proxy (IV k) -> Proxy k
deIVProxy = const Proxy
-- |Cook book mode - not really a mode at all. If you don't know what you're doing, don't use this mode^H^H^H^H library.
modeEcb :: BlockCipher k => k -> L.ByteString -> L.ByteString
modeEcb k msg =
let chunks = chunkFor k msg
in L.fromChunks $ map (encryptBlock k) chunks
{-# INLINEABLE modeEcb #-}
-- |ECB decrypt, complementary to `ecb`.
modeUnEcb :: BlockCipher k => k -> L.ByteString -> L.ByteString
modeUnEcb k msg =
let chunks = chunkFor k msg
in L.fromChunks $ map (decryptBlock k) chunks
{-# INLINEABLE modeUnEcb #-}
-- |SIV (Synthetic IV) mode for lazy bytestrings. The third argument is
-- the optional list of bytestrings to be authenticated but not
-- encrypted As required by the specification this algorithm may
-- return nothing when certain constraints aren't met.
modeSiv :: BlockCipher k => k -> k -> [L.ByteString] -> L.ByteString -> Maybe L.ByteString
modeSiv k1 k2 xs m
| length xs > bSizeb - 1 = Nothing
| otherwise = Just
. L.append iv
. fst
. ctrLazy k2 (IV . sivMask . B.concat . L.toChunks $ iv)
$ m
where
bSize = fromIntegral $ blockSizeBytes `for` k1
bSizeb = fromIntegral $ blockSize `for` k1
iv = cMacStar k1 $ xs ++ [m]
-- |SIV (Synthetic IV) for lazy bytestrings. The third argument is the
-- optional list of bytestrings to be authenticated but not encrypted.
-- As required by the specification this algorithm may return nothing
-- when authentication fails.
modeUnSiv :: BlockCipher k => k -> k -> [L.ByteString] -> L.ByteString -> Maybe L.ByteString
modeUnSiv k1 k2 xs c | length xs > bSizeb - 1 = Nothing
| L.length c < fromIntegral bSize = Nothing
| iv /= (cMacStar k1 $ xs ++ [dm]) = Nothing
| otherwise = Just dm
where
bSize = fromIntegral $ blockSizeBytes `for` k1
bSizeb = fromIntegral $ blockSize `for` k1
(iv,m) = L.splitAt (fromIntegral bSize) c
dm = fst $ modeUnCtr incIV k2 (IV $ sivMask $ B.concat $ L.toChunks iv) m
-- |SIV (Synthetic IV) mode for strict bytestrings. First argument is
-- the optional list of bytestrings to be authenticated but not
-- encrypted. As required by the specification this algorithm may
-- return nothing when certain constraints aren't met.
modeSiv' :: BlockCipher k => k -> k -> [B.ByteString] -> B.ByteString -> Maybe B.ByteString
modeSiv' k1 k2 xs m | length xs > bSizeb - 1 = Nothing
| otherwise = Just $ B.append iv $ fst $ Crypto.Classes.ctr k2 (IV $ sivMask iv) m
where
bSize = fromIntegral $ blockSizeBytes `for` k1
bSizeb = fromIntegral $ blockSize `for` k1
iv = cMacStar' k1 $ xs ++ [m]
-- |SIV (Synthetic IV) for strict bytestrings First argument is the
-- optional list of bytestrings to be authenticated but not encrypted
-- As required by the specification this algorithm may return nothing
-- when authentication fails.
modeUnSiv' :: BlockCipher k => k -> k -> [B.ByteString] -> B.ByteString -> Maybe B.ByteString
modeUnSiv' k1 k2 xs c | length xs > bSizeb - 1 = Nothing
| B.length c < bSize = Nothing
| iv /= (cMacStar' k1 $ xs ++ [dm]) = Nothing
| otherwise = Just dm
where
bSize = fromIntegral $ blockSizeBytes `for` k1
bSizeb = fromIntegral $ blockSize `for` k1
(iv,m) = B.splitAt bSize c
dm = fst $ Crypto.Classes.unCtr k2 (IV $ sivMask iv) m
modeCbc :: BlockCipher k => k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeCbc k (IV v) plaintext =
let blks = chunkFor k plaintext
(cts, iv) = go blks v
in (L.fromChunks cts, IV iv)
where
go [] iv = ([], iv)
go (b:bs) iv =
let c = encryptBlock k (zwp' iv b)
(cs, ivFinal) = go bs c
in (c:cs, ivFinal)
{-# INLINEABLE modeCbc #-}
modeUnCbc :: BlockCipher k => k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeUnCbc k (IV v) ciphertext =
let blks = chunkFor k ciphertext
(pts, iv) = go blks v
in (L.fromChunks pts, IV iv)
where
go [] iv = ([], iv)
go (c:cs) iv =
let p = zwp' (decryptBlock k c) iv
(ps, ivFinal) = go cs c
in (p:ps, ivFinal)
{-# INLINEABLE modeUnCbc #-}
-- |Counter mode for lazy bytestrings
modeCtr :: BlockCipher k => (IV k -> IV k) -> k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeCtr = modeUnCtr
-- |Counter mode for lazy bytestrings
modeUnCtr :: BlockCipher k => (IV k -> IV k) -> k -> IV k -> L.ByteString -> (L.ByteString, IV k)
modeUnCtr f k (IV iv) msg =
let ivStr = iterate f $ IV iv
ivLen = fromIntegral $ B.length iv
newIV = head $ genericDrop ((ivLen - 1 + L.length msg) `div` ivLen) ivStr
in (zwp (L.fromChunks $ map (encryptBlock k) $ map initializationVector ivStr) msg, newIV)
-- |The number of bytes in a block cipher block
blockSizeBytes :: (BlockCipher k) => Tagged k ByteLength
blockSizeBytes = fmap (`div` 8) blockSize
-- |The number of bytes in a block cipher key (assuming it is an even
-- multiple of 8 bits)
keyLengthBytes :: (BlockCipher k) => Tagged k ByteLength
keyLengthBytes = fmap (`div` 8) keyLength
-- |Build a symmetric key using the system entropy (see 'System.Entropy')
buildKeyIO :: (BlockCipher k) => IO k
buildKeyIO = buildKeyM getEntropy fail
-- |Build a symmetric key using a given 'Crypto.Random.CryptoRandomGen'
buildKeyGen :: (BlockCipher k, CryptoRandomGen g) => g -> Either GenError (k, g)
buildKeyGen = runStateT (buildKeyM (StateT . genBytes) (lift . Left . GenErrorOther))
buildKeyM :: (BlockCipher k, Monad m) => (Int -> m B.ByteString) -> (String -> m k) -> m k
buildKeyM getMore err = go (0::Int)
where
go 1000 = err "Tried 1000 times to generate a key from the system entropy.\
\ No keys were returned! Perhaps the system entropy is broken\
\ or perhaps the BlockCipher instance being used has a non-flat\
\ keyspace."
go i = do
let bs = keyLength
kd <- getMore ((7 + untag bs) `div` 8)
case buildKey kd of
Nothing -> go (i+1)
Just k -> return $ k `asTaggedTypeOf` bs
-- |Asymetric ciphers (common ones being RSA or EC based)
class AsymCipher p v | p -> v, v -> p where
buildKeyPair :: CryptoRandomGen g => g -> BitLength -> Either GenError ((p,v),g) -- ^ build a public/private key pair using the provided generator
encryptAsym :: (CryptoRandomGen g) => g -> p -> B.ByteString -> Either GenError (B.ByteString, g) -- ^ Asymetric encryption
decryptAsym :: (CryptoRandomGen g) => g -> v -> B.ByteString -> Either GenError (B.ByteString, g) -- ^ Asymetric decryption
publicKeyLength :: p -> BitLength
privateKeyLength :: v -> BitLength
-- |Build a pair of asymmetric keys using the system random generator.
-- WARNING: This function opens a file handle which will never be closed!
buildKeyPairIO :: AsymCipher p v => BitLength -> IO (Either GenError (p,v))
buildKeyPairIO bl = do
g <- newGenIO :: IO SystemRandom
case buildKeyPair g bl of
Left err -> return (Left err)
Right (k,_) -> return (Right k)
-- |Flipped 'buildKeyPair' for ease of use with state monads.
buildKeyPairGen :: (CryptoRandomGen g, AsymCipher p v) => BitLength -> g -> Either GenError ((p,v),g)
buildKeyPairGen = flip buildKeyPair
-- | A stream cipher class. Instance are expected to work on messages as small as one byte
-- The length of the resulting cipher text should be equal
-- to the length of the input message.
class (Serialize k) => StreamCipher k iv | k -> iv where
buildStreamKey :: B.ByteString -> Maybe k
encryptStream :: k -> iv -> B.ByteString -> (B.ByteString, iv)
decryptStream :: k -> iv -> B.ByteString -> (B.ByteString, iv)
streamKeyLength :: Tagged k BitLength
-- |Build a stream key using the system random generator
buildStreamKeyIO :: StreamCipher k iv => IO k
buildStreamKeyIO = buildStreamKeyM getEntropy fail
-- |Build a stream key using the provided random generator
buildStreamKeyGen :: (StreamCipher k iv, CryptoRandomGen g) => g -> Either GenError (k, g)
buildStreamKeyGen = runStateT (buildStreamKeyM (StateT . genBytes) (lift . Left . GenErrorOther))
buildStreamKeyM :: (Monad m, StreamCipher k iv) => (Int -> m B.ByteString) -> (String -> m k) -> m k
buildStreamKeyM getMore err = go (0::Int)
where
go 1000 = err "Tried 1000 times to generate a stream key from the system entropy.\
\ No keys were returned! Perhaps the system entropy is broken\
\ or perhaps the BlockCipher instance being used has a non-flat\
\ keyspace."
go i = do
let k = streamKeyLength
kd <- getMore ((untag k + 7) `div` 8)
case buildStreamKey kd of
Nothing -> go (i+1)
Just k' -> return $ k' `asTaggedTypeOf` k
-- | A class for signing operations which inherently can not be as generic
-- as asymetric ciphers (ex: DSA).
class (Serialize p, Serialize v) => Signing p v | p -> v, v -> p where
sign :: CryptoRandomGen g => g -> v -> L.ByteString -> Either GenError (B.ByteString, g)
verify :: p -> L.ByteString -> B.ByteString -> Bool
buildSigningPair :: CryptoRandomGen g => g -> BitLength -> Either GenError ((p, v), g)
signingKeyLength :: v -> BitLength
verifyingKeyLength :: p -> BitLength
-- |Build a signing key using the system random generator
-- WARNING: This function opens a file handle which will never be closed!
buildSigningKeyPairIO :: (Signing p v) => BitLength -> IO (Either GenError (p,v))
buildSigningKeyPairIO bl = do
g <- newGenIO :: IO SystemRandom
case buildSigningPair g bl of
Left err -> return $ Left err
Right (k,_) -> return $ Right k
-- |Flipped 'buildSigningPair' for ease of use with state monads.
buildSigningKeyPairGen :: (Signing p v, CryptoRandomGen g) => BitLength -> g -> Either GenError ((p, v), g)
buildSigningKeyPairGen = flip buildSigningPair
-- | Like `ecb` but for strict bytestrings
modeEcb' :: BlockCipher k => k -> B.ByteString -> B.ByteString
modeEcb' k msg =
let chunks = chunkFor' k msg
in B.concat $ map (encryptBlock k) chunks
{-# INLINE modeEcb' #-}
-- |Decryption complement to `ecb'`
modeUnEcb' :: BlockCipher k => k -> B.ByteString -> B.ByteString
modeUnEcb' k ct =
let chunks = chunkFor' k ct
in B.concat $ map (decryptBlock k) chunks
{-# INLINE modeUnEcb' #-}
-- |Cipher block chaining encryption mode on strict bytestrings
modeCbc' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeCbc' k (IV v) plaintext =
let blks = chunkFor' k plaintext
(cts, iv) = go blks v
in (B.concat cts, IV iv)
where
go [] iv = ([], iv)
go (b:bs) iv =
let c = encryptBlock k (zwp' iv b)
(cs, ivFinal) = go bs c
in (c:cs, ivFinal)
{-# INLINEABLE modeCbc' #-}
-- |Cipher block chaining decryption for strict bytestrings
modeUnCbc' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeUnCbc' k (IV v) ciphertext =
let blks = chunkFor' k ciphertext
(pts, iv) = go blks v
in (B.concat pts, IV iv)
where
go [] iv = ([], iv)
go (c:cs) iv =
let p = zwp' (decryptBlock k c) iv
(ps, ivFinal) = go cs c
in (p:ps, ivFinal)
{-# INLINEABLE modeUnCbc' #-}
-- |Output feedback mode for strict bytestrings
modeOfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeOfb' = modeUnOfb'
{-# INLINEABLE modeOfb' #-}
-- |Output feedback mode for strict bytestrings
modeUnOfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeUnOfb' k (IV iv) msg =
let ivStr = collect (B.length msg + ivLen) (drop 1 (iterate (encryptBlock k) iv))
ivLen = B.length iv
mLen = fromIntegral (B.length msg)
newIV = IV . B.concat . L.toChunks . L.take (fromIntegral ivLen) . L.drop mLen . L.fromChunks $ ivStr
in (zwp' (B.concat ivStr) msg, newIV)
{-# INLINEABLE modeUnOfb' #-}
-- |Counter mode for strict bytestrings
modeCtr' :: BlockCipher k => (IV k -> IV k) -> k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeCtr' = modeUnCtr'
{-# INLINEABLE modeCtr' #-}
-- |Counter mode for strict bytestrings
modeUnCtr' :: BlockCipher k => (IV k -> IV k) -> k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeUnCtr' f k iv msg =
let fa (st,IV iv) c
| B.null st = fa (encryptBlock k iv, f (IV iv)) c
| otherwise = let Just (s,nst) = B.uncons st in ((nst,IV iv),xor c s)
((_,newIV),res) = B.mapAccumL fa (B.empty,iv) msg
in (res,newIV)
{-# INLINEABLE modeUnCtr' #-}
-- |Ciphertext feed-back encryption mode for strict bytestrings (with
-- s == blockSize)
modeCfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeCfb' k (IV v) msg =
let blks = chunkFor' k msg
(cs,ivF) = go v blks
in (B.concat cs, IV ivF)
where
go iv [] = ([],iv)
go iv (b:bs) =
let c = zwp' (encryptBlock k iv) b
(cs,ivFinal) = go c bs
in (c:cs, ivFinal)
{-# INLINEABLE modeCfb' #-}
-- |Ciphertext feed-back decryption mode for strict bytestrings (with s == blockSize)
modeUnCfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k)
modeUnCfb' k (IV v) msg =
let blks = chunkFor' k msg
(ps, ivF) = go v blks
in (B.concat ps, IV ivF)
where
go iv [] = ([], iv)
go iv (b:bs) =
let p = zwp' (encryptBlock k iv) b
(ps, ivF) = go b bs
in (p:ps, ivF)
{-# INLINEABLE modeUnCfb' #-}
toChunks :: Int -> B.ByteString -> [B.ByteString]
toChunks n val = go val
where
go b
| B.length b == 0 = []
| otherwise = let (h,t) = B.splitAt n b
in h : go t
-- |Increase an `IV` by one. This is way faster than decoding,
-- increasing, encoding
incIV :: BlockCipher k => IV k -> IV k
incIV (IV b) = IV $ snd $ B.mapAccumR (incw) 1 b
where
incw :: Word16 -> Word8 -> (Word16, Word8)
incw i w = let nw=i+(fromIntegral w) in (shiftR nw 8, fromIntegral nw)
-- |Obtain an `IV` made only of zeroes
zeroIV :: (BlockCipher k) => IV k
zeroIV = iv
where bytes = ivBlockSizeBytes iv
iv = IV $ B.replicate bytes 0
zeroIVcwc :: BlockCipher k => IV k
zeroIVcwc = iv
where bytes = ivBlockSizeBytes iv - 5 -- a constant of cwc (4 bytes for ctr mode, 1 for a sort of header on the iv)
iv = IV $ B.replicate bytes 0
-- Break a bytestring into block size chunks.
chunkFor :: (BlockCipher k) => k -> L.ByteString -> [B.ByteString]
chunkFor k = go
where
blkSz = (blockSize `for` k) `div` 8
blkSzI = fromIntegral blkSz
go bs | L.length bs < blkSzI = []
| otherwise = let (blk,rest) = L.splitAt blkSzI bs in B.concat (L.toChunks blk) : go rest
{-# INLINE chunkFor #-}
-- Break a bytestring into block size chunks.
chunkFor' :: (BlockCipher k) => k -> B.ByteString -> [B.ByteString]
chunkFor' k = go
where
blkSz = (blockSize `for` k) `div` 8
go bs | B.length bs < blkSz = []
| otherwise = let (blk,rest) = B.splitAt blkSz bs in blk : go rest
{-# INLINE chunkFor' #-}
-- |Create the mask for SIV based ciphers
sivMask :: B.ByteString -> B.ByteString
sivMask b = snd $ B.mapAccumR (go) 0 b
where
go :: Int -> Word8 -> (Int,Word8)
go 24 w = (32,clearBit w 7)
go 56 w = (64,clearBit w 7)
go n w = (n+8,w)
ivBlockSizeBytes :: BlockCipher k => IV k -> Int
ivBlockSizeBytes iv =
let p = deIVProxy (proxyOf iv)
in proxy blockSize p `div` 8
where
proxyOf :: a -> Proxy a
proxyOf = const Proxy
{-# INLINEABLE ivBlockSizeBytes #-}
instance (BlockCipher k) => Serialize (IV k) where
get = do
let p = Proxy
doGet :: BlockCipher k => Proxy k -> Get (IV k)
doGet pr = liftM IV (SG.getByteString (proxy blockSizeBytes pr))
iv <- doGet p
return (iv `asProxyTypeOf` ivProxy p)
put (IV iv) = SP.putByteString iv
|