1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
-- |
-- Module : Crypto.Random.API
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
module Crypto.Random.API
( CPRG(..)
, ReseedPolicy(..)
, genRandomBytes
, genRandomBytes'
, withRandomBytes
, getSystemEntropy
-- * System Random generator
, SystemRandom
, getSystemRandomGen
) where
import Control.Applicative
import qualified Data.ByteString as B
import Data.ByteString (ByteString)
import qualified System.Entropy as SE
import System.IO.Unsafe (unsafeInterleaveIO)
import Data.Word
-- | This is the reseed policy requested by the CPRG
data ReseedPolicy =
NeverReseed -- ^ there is no need to reseed as either
-- the RG doesn't supports it, it's done automatically
-- or pratically the reseeding period exceed a Word64 type.
| ReseedInBytes Word64 -- ^ the RG need to be reseed in the number
-- of bytes joined to the type. it should be done before
-- the number reached 0, otherwise an user of the RG
-- might request too many bytes and get repeated random bytes.
deriving (Show,Eq)
-- | A class of Cryptographic Secure Random generator.
--
-- The main difference with the generic haskell RNG is that
-- it return bytes instead of integer.
--
-- It is quite similar to the CryptoRandomGen class in crypto-api
-- except that error are not returned to the user. Instead
-- the user is suppose to handle reseeding by using the NeedReseed
-- and SupplyEntropy methods. For other type of errors, the user
-- is expected to generate bytes with the parameters bounds explicity
-- defined here.
--
-- The CPRG need to be able to generate up to 2^20 bytes in one call,
--
class CPRG g where
-- | Provide a way to query the CPRG to calculate when new entropy
-- is required to be supplied so the CPRG doesn't repeat output, and
-- break assumptions. This returns the number of bytes before
-- which supply entropy should have been called.
cprgNeedReseed :: g -> ReseedPolicy
-- | Supply entropy to the CPRG, that can be used now or later
-- to reseed the CPRG. This should be used in conjunction to
-- NeedReseed to know when to supply entropy.
cprgSupplyEntropy :: ByteString -> g -> g
-- | Generate bytes using the CPRG and the number specified.
--
-- For user of the API, it's recommended to use genRandomBytes
-- instead of this method directly. the CPRG need to be able
-- to supply at minimum 2^20 bytes at a time.
cprgGenBytes :: Int -> g -> (ByteString, g)
-- | Generate bytes using the cprg in parameter.
--
-- If the number of bytes requested is really high,
-- it's preferable to use 'genRandomBytes' for better memory efficiency.
genRandomBytes :: CPRG g => Int -- ^ number of bytes to return
-> g -- ^ CPRG to use
-> (ByteString, g)
genRandomBytes len rng = (\(lbs,g) -> (B.concat lbs, g)) $ genRandomBytes' len rng
-- | Generate bytes using the cprg in parameter.
--
-- This is not tail recursive and an excessive len (>= 2^29) parameter would
-- result in stack overflow.
genRandomBytes' :: CPRG g => Int -- ^ number of bytes to return
-> g -- ^ CPRG to use
-> ([ByteString], g)
genRandomBytes' len rng
| len < 0 = error "genBytes: cannot request negative amount of bytes."
| otherwise = loop rng len
where loop g len
| len == 0 = ([], g)
| otherwise = let itBytes = min (2^20) len
(bs, g') = cprgGenBytes itBytes g
(l, g'') = genRandomBytes' (len-itBytes) g'
in (bs:l, g'')
-- | this is equivalent to using Control.Arrow 'first' with 'genRandomBytes'.
--
-- namely it generate @len bytes and map the bytes to the function @f
withRandomBytes :: CPRG g => g -> Int -> (ByteString -> a) -> (a, g)
withRandomBytes rng len f = (f bs, rng')
where (bs, rng') = genRandomBytes len rng
-- | Return system entropy using the entropy package 'getEntropy'
getSystemEntropy :: Int -> IO ByteString
getSystemEntropy = SE.getEntropy
-- | This is a simple generator that pull bytes from the system entropy
-- directly. Its randomness and security properties are absolutely
-- depends on the underlaying system implementation.
data SystemRandom = SystemRandom [B.ByteString]
-- | Get a random number generator based on the standard system entropy source
getSystemRandomGen :: IO SystemRandom
getSystemRandomGen = do
ch <- SE.openHandle
let getBS = unsafeInterleaveIO $ do
bs <- SE.hGetEntropy ch 8192
more <- getBS
return (bs:more)
SystemRandom <$> getBS
instance CPRG SystemRandom where
cprgNeedReseed _ = NeverReseed
cprgSupplyEntropy _ g = g
cprgGenBytes n (SystemRandom l) = (B.concat l1, SystemRandom l2)
where (l1, l2) = lbsSplitAt n l
lbsSplitAt rBytes (x:xs)
| xLen >= rBytes =
let (b1,b2) = B.splitAt rBytes x
in ([b1], b2:xs)
| otherwise =
let (l1,l2) = lbsSplitAt (rBytes-xLen) xs
in (x:l1,l2)
where xLen = B.length x
|