File: NumberTheory.hs

package info (click to toggle)
haskell-crypto 4.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 344 kB
  • sloc: haskell: 2,949; makefile: 2
file content (203 lines) | stat: -rw-r--r-- 7,112 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
--Copyright 2001, 2002, 2003 David J. Sankel
--
--This file is part of rsa-haskell.
--rsa-haskell is free software; you can redistribute it and/or modify
--it under the terms of the GNU General Public License as published by
--the Free Software Foundation; either version 2 of the License, or
--(at your option) any later version.
--
--rsa-haskell is distributed in the hope that it will be useful,
--but WITHOUT ANY WARRANTY; without even the implied warranty of
--MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--GNU General Public License for more details.
--
--You should have received a copy of the GNU General Public License
--along with rsa-haskell; if not, write to the Free Software
--Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

module Codec.Encryption.RSA.NumberTheory( 
inverse, extEuclGcd, simplePrimalityTest, getPrime, pg, isPrime, 
rabinMillerPrimalityTest, expmod, factor, testInverse, primes, (/|),
randomOctet
)    where


import System.Random(getStdRandom,randomR)
--The following line is required for ghc optomized implementation
--  (see comments beginning with GHC):
-- import Bits(setBit)
import Data.List(elemIndex)
import Data.Maybe(fromJust)
import Data.Char(chr,ord)
import Data.Bits(xor)

--Precondition: the integer is >= 0
randomOctet :: Int -> IO( String )
randomOctet n
  | n < 0 = error "randomOctet argument doesn't meet preconditions"
  | otherwise = (sequence $ take n $ repeat $ getStdRandom (randomR( 0,255) )) 
                  >>= (return . (map chr) )

--Returns a list [r_1,r_2,r_3,r_4, . . ., r_n ] where
--  a = p_1^r_1 * p_2^r_2 * p_3^r_3 * . . . * p_n^r_n
factor :: Integer -> [Int]
factor = factor_1

--An implimentation of factor
factor_1 :: Integer -> [Int]
factor_1 a = reverse . dropWhile (== 0) . reverse 
  . map (\x -> largestPower x a) . takeWhile (<= a ) $ primes

--Another implimentation of factor
factor_2 :: Integer -> [Integer]
factor_2 a = 
  let 
    p = map (fromIntegral) . reverse . dropWhile (== 0) 
      . reverse . map (\x -> largestPower x a) 
	  . takeWhile (<= a `div` 2) $ primes
  in
    if (length p == 0)
    then (take ((fromIntegral . fromJust $ elemIndex a primes)-1) (repeat 0)) 
	  ++ [1]
    else p
 
--Find the inverse of x (mod n)
inverse :: Integer -> Integer -> Integer
inverse x n = (fst (extEuclGcd x n)) `mod` n

testInverse :: Integer ->Integer -> Bool
testInverse a b = ((inverse a b)*a) `mod` b == 1 

--Extended Eucildean algorithm
--Returns (x,y) where gcd(a,b) = xa + yb
extEuclGcd :: Integer -> Integer -> (Integer,Integer)
extEuclGcd a b = extEuclGcd_iter a b (1,0) (0,1)

extEuclGcd_iter :: Integer -> Integer 
  -> (Integer,Integer) -> (Integer,Integer) -> (Integer,Integer)
extEuclGcd_iter a b (c1,c2) (d1,d2)
  |  (a > b) && (r1 == 0)  = (d1,d2)
  |  (a > b) && (r1 /= 0)  = extEuclGcd_iter 
    (a - (q1*b)) b (c1 - (q1*d1), c2 - (q1*d2)) (d1,d2)
  |  (a <= b) && (r2 == 0) = (c1,c2)
  |  (a <= b) && (r2 /= 0) = extEuclGcd_iter 
    a (b - (q2*a)) (c1,c2) ( d1 - (q2*c1), d2- (q2*c2))
      where
        q1 = a `div` b
        q2 = b `div` a
        r1 = a `mod` b
        r2 = b `mod` a

-- This will return a random Integer of n bits.  The highest order bit
-- will always be 1.

-- GHC optomized implementation
-- getNumber :: Int -> IO Integer
-- getNumber n = do 
--                  i <- getStdRandom ( randomR (0, a-1 ) )
--                  return (setBit i (n-1))
--               where
--                   a = (2^n) ::Integer

--This is the portable version
getNumber :: Int -> IO Integer
getNumber n = do 
                 i <- getStdRandom ( randomR (0, a-1 ) )
                 return (i+(2^(n-1)))
              where
                  a = (2^(n-1)) ::Integer

--Returns a probable prime number of nBits bits

-- GHC optomized implementation
-- getPrime  :: Int -> IO Integer
-- getPrime nBits = do
--                 r <- getNumber nBits
--                 let p = (setBit r 0) --Make it odd for speed
--                 pIsPrime <- isPrime p
--                 if( pIsPrime )
--                    then return p
--                    else getPrime nBits

--This is the portable version
getPrime  :: Int -> IO Integer
getPrime nBits = do
                r <- getNumber nBits
                let p = if( 2 /| r ) then r else r+1
                pIsPrime <- isPrime p
                if( pIsPrime )
                   then return p
                   else getPrime nBits

--Prime Generate:
--Generates a prime p | minimum <= p <= maximum and gcd p e  == 1
pg :: Integer -> Integer -> Integer -> IO(Integer)
pg minimum maximum e = do
  p <- getStdRandom( randomR( minimum, maximum ) )
  pIsPrime <- isPrime p
  if( pIsPrime && (gcd p e) == 1 )
    then return p
    else pg minimum maximum e

isPrime :: Integer -> IO Bool
isPrime a
  | (a <= 1)    = return False
  | (a <= 2000) = return (simplePrimalityTest a)
  | otherwise   = if (simplePrimalityTest a)
                    then do --Do this 5 times for saftey
                      test <- mapM rabinMillerPrimalityTest $ take 5 $ repeat a
                      return (and test)
                    else return False

simplePrimalityTest :: Integer -> Bool
simplePrimalityTest a = foldr (&&) True (map (/| a)(takeWhile (<it) primes))
  where it = min 2000 a

--returns greatest z where x^z | y
largestPower :: Integer -> Integer -> Int
largestPower x y = fromJust . elemIndex False 
  . map (\b -> (y `mod` x^b) == 0) $ [1..]

rabinMillerPrimalityTest :: Integer -> IO Bool
rabinMillerPrimalityTest p = rabinMillerPrimalityTest_iter_1 p b m
                                 where
                                   b = fromIntegral $ largestPower 2 (p-1)
                                   m = (p-1) `div` (2^b)

--The ?prime? Number -> The amount of iterations -> b -> m
rabinMillerPrimalityTest_iter_1 :: Integer -> Integer -> Integer -> IO Bool
rabinMillerPrimalityTest_iter_1 p b m =
              do
                a <- getStdRandom ( randomR (0, 2000 ) )
                return (rabinMillerPrimalityTest_iter_2 p b 0 (expmod a m p))

rabinMillerPrimalityTest_iter_2 :: Integer -> Integer -> Integer -> Integer 
  -> Bool
rabinMillerPrimalityTest_iter_2 p b j z 
  | (z == 1)   || (z == p-1)       = True
  | (j > 0)    && (z == 1)         = False
  | (j+1 < b)  && (z /= p-1)       = 
    (rabinMillerPrimalityTest_iter_2 p b (j+1) ((z^2) `mod` p ))
  | z == p - 1                     = True
  | (j+1 == b) && (z /= p-1)       = False

--a^x (mod m)
expmod :: Integer -> Integer -> Integer -> Integer
expmod a x m |  x == 0    = 1
             |  x == 1    = a `mod` m
             |  even x    = let p = (expmod a (x `div` 2) m) `mod` m
                            in  (p^2) `mod` m
             |  otherwise = (a * expmod a (x-1) m) `mod` m

--Largest x where x^2 < i
intSqrt :: Integer -> Integer
intSqrt i = floor (sqrt (fromIntegral i ) )

--The doesn't divide function
(/|) :: Integer -> Integer -> Bool
a /| b = b `mod` a /= 0

--List of primes
primes :: [Integer]
primes = 2:[x | x <- [3,5..], foldr (&&) True 
          ( map ( /| x ) (takeWhile (<=(intSqrt x)) primes ) ) ]