1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
--Copyright 2001, 2002, 2003 David J. Sankel
--
--This file is part of rsa-haskell.
--rsa-haskell is free software; you can redistribute it and/or modify
--it under the terms of the GNU General Public License as published by
--the Free Software Foundation; either version 2 of the License, or
--(at your option) any later version.
--
--rsa-haskell is distributed in the hope that it will be useful,
--but WITHOUT ANY WARRANTY; without even the implied warranty of
--MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
--GNU General Public License for more details.
--
--You should have received a copy of the GNU General Public License
--along with rsa-haskell; if not, write to the Free Software
--Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
module Codec.Encryption.RSA.NumberTheory(
inverse, extEuclGcd, simplePrimalityTest, getPrime, pg, isPrime,
rabinMillerPrimalityTest, expmod, factor, testInverse, primes, (/|),
randomOctet
) where
import System.Random(getStdRandom,randomR)
--The following line is required for ghc optomized implementation
-- (see comments beginning with GHC):
-- import Bits(setBit)
import Data.List(elemIndex)
import Data.Maybe(fromJust)
import Data.Char(chr,ord)
import Data.Bits(xor)
--Precondition: the integer is >= 0
randomOctet :: Int -> IO( String )
randomOctet n
| n < 0 = error "randomOctet argument doesn't meet preconditions"
| otherwise = (sequence $ take n $ repeat $ getStdRandom (randomR( 0,255) ))
>>= (return . (map chr) )
--Returns a list [r_1,r_2,r_3,r_4, . . ., r_n ] where
-- a = p_1^r_1 * p_2^r_2 * p_3^r_3 * . . . * p_n^r_n
factor :: Integer -> [Int]
factor = factor_1
--An implimentation of factor
factor_1 :: Integer -> [Int]
factor_1 a = reverse . dropWhile (== 0) . reverse
. map (\x -> largestPower x a) . takeWhile (<= a ) $ primes
--Another implimentation of factor
factor_2 :: Integer -> [Integer]
factor_2 a =
let
p = map (fromIntegral) . reverse . dropWhile (== 0)
. reverse . map (\x -> largestPower x a)
. takeWhile (<= a `div` 2) $ primes
in
if (length p == 0)
then (take ((fromIntegral . fromJust $ elemIndex a primes)-1) (repeat 0))
++ [1]
else p
--Find the inverse of x (mod n)
inverse :: Integer -> Integer -> Integer
inverse x n = (fst (extEuclGcd x n)) `mod` n
testInverse :: Integer ->Integer -> Bool
testInverse a b = ((inverse a b)*a) `mod` b == 1
--Extended Eucildean algorithm
--Returns (x,y) where gcd(a,b) = xa + yb
extEuclGcd :: Integer -> Integer -> (Integer,Integer)
extEuclGcd a b = extEuclGcd_iter a b (1,0) (0,1)
extEuclGcd_iter :: Integer -> Integer
-> (Integer,Integer) -> (Integer,Integer) -> (Integer,Integer)
extEuclGcd_iter a b (c1,c2) (d1,d2)
| (a > b) && (r1 == 0) = (d1,d2)
| (a > b) && (r1 /= 0) = extEuclGcd_iter
(a - (q1*b)) b (c1 - (q1*d1), c2 - (q1*d2)) (d1,d2)
| (a <= b) && (r2 == 0) = (c1,c2)
| (a <= b) && (r2 /= 0) = extEuclGcd_iter
a (b - (q2*a)) (c1,c2) ( d1 - (q2*c1), d2- (q2*c2))
where
q1 = a `div` b
q2 = b `div` a
r1 = a `mod` b
r2 = b `mod` a
-- This will return a random Integer of n bits. The highest order bit
-- will always be 1.
-- GHC optomized implementation
-- getNumber :: Int -> IO Integer
-- getNumber n = do
-- i <- getStdRandom ( randomR (0, a-1 ) )
-- return (setBit i (n-1))
-- where
-- a = (2^n) ::Integer
--This is the portable version
getNumber :: Int -> IO Integer
getNumber n = do
i <- getStdRandom ( randomR (0, a-1 ) )
return (i+(2^(n-1)))
where
a = (2^(n-1)) ::Integer
--Returns a probable prime number of nBits bits
-- GHC optomized implementation
-- getPrime :: Int -> IO Integer
-- getPrime nBits = do
-- r <- getNumber nBits
-- let p = (setBit r 0) --Make it odd for speed
-- pIsPrime <- isPrime p
-- if( pIsPrime )
-- then return p
-- else getPrime nBits
--This is the portable version
getPrime :: Int -> IO Integer
getPrime nBits = do
r <- getNumber nBits
let p = if( 2 /| r ) then r else r+1
pIsPrime <- isPrime p
if( pIsPrime )
then return p
else getPrime nBits
--Prime Generate:
--Generates a prime p | minimum <= p <= maximum and gcd p e == 1
pg :: Integer -> Integer -> Integer -> IO(Integer)
pg minimum maximum e = do
p <- getStdRandom( randomR( minimum, maximum ) )
pIsPrime <- isPrime p
if( pIsPrime && (gcd p e) == 1 )
then return p
else pg minimum maximum e
isPrime :: Integer -> IO Bool
isPrime a
| (a <= 1) = return False
| (a <= 2000) = return (simplePrimalityTest a)
| otherwise = if (simplePrimalityTest a)
then do --Do this 5 times for saftey
test <- mapM rabinMillerPrimalityTest $ take 5 $ repeat a
return (and test)
else return False
simplePrimalityTest :: Integer -> Bool
simplePrimalityTest a = foldr (&&) True (map (/| a)(takeWhile (<it) primes))
where it = min 2000 a
--returns greatest z where x^z | y
largestPower :: Integer -> Integer -> Int
largestPower x y = fromJust . elemIndex False
. map (\b -> (y `mod` x^b) == 0) $ [1..]
rabinMillerPrimalityTest :: Integer -> IO Bool
rabinMillerPrimalityTest p = rabinMillerPrimalityTest_iter_1 p b m
where
b = fromIntegral $ largestPower 2 (p-1)
m = (p-1) `div` (2^b)
--The ?prime? Number -> The amount of iterations -> b -> m
rabinMillerPrimalityTest_iter_1 :: Integer -> Integer -> Integer -> IO Bool
rabinMillerPrimalityTest_iter_1 p b m =
do
a <- getStdRandom ( randomR (0, 2000 ) )
return (rabinMillerPrimalityTest_iter_2 p b 0 (expmod a m p))
rabinMillerPrimalityTest_iter_2 :: Integer -> Integer -> Integer -> Integer
-> Bool
rabinMillerPrimalityTest_iter_2 p b j z
| (z == 1) || (z == p-1) = True
| (j > 0) && (z == 1) = False
| (j+1 < b) && (z /= p-1) =
(rabinMillerPrimalityTest_iter_2 p b (j+1) ((z^2) `mod` p ))
| z == p - 1 = True
| (j+1 == b) && (z /= p-1) = False
--a^x (mod m)
expmod :: Integer -> Integer -> Integer -> Integer
expmod a x m | x == 0 = 1
| x == 1 = a `mod` m
| even x = let p = (expmod a (x `div` 2) m) `mod` m
in (p^2) `mod` m
| otherwise = (a * expmod a (x-1) m) `mod` m
--Largest x where x^2 < i
intSqrt :: Integer -> Integer
intSqrt i = floor (sqrt (fromIntegral i ) )
--The doesn't divide function
(/|) :: Integer -> Integer -> Bool
a /| b = b `mod` a /= 0
--List of primes
primes :: [Integer]
primes = 2:[x | x <- [3,5..], foldr (&&) True
( map ( /| x ) (takeWhile (<=(intSqrt x)) primes ) ) ]
|