1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
{-# LANGUAGE OverloadedStrings #-}
import Test.Framework (Test, defaultMain, testGroup)
import Test.Framework.Providers.QuickCheck2 (testProperty)
import Test.QuickCheck
import Test.QuickCheck.Test
import System.IO (hFlush, stdout)
import Control.Monad
import Control.Arrow (first)
import Control.Applicative ((<$>))
import Data.List (intercalate)
import Data.Char
import Data.Bits
import Data.Word
import qualified Data.Vector.Unboxed as V
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC
-- for DSA
import qualified Crypto.Hash.SHA1 as SHA1
-- numbers
{-
import Number.ModArithmetic
import Number.Basic
import Number.Prime
import Number.Serialize
-}
-- ciphers/Kexch
import AES (aesTests)
import qualified Crypto.Cipher.AES.Haskell as AES
import qualified Crypto.Cipher.RSA as RSA
import qualified Crypto.Cipher.DSA as DSA
import qualified Crypto.Cipher.DH as DH
import Crypto.Random
import KAT
{-
prop_gcde_binary_valid (Positive a, Positive b) =
let (x,y,v) = gcde_binary a b in
let (x',y',v') = gcde a b in
and [v==v', a*x' + b*y' == v', a*x + b*y == v, gcd a b == v]
prop_modexp_rtl_valid (NonNegative a, NonNegative b, Positive m) =
exponantiation_rtl_binary a b m == ((a ^ b) `mod` m)
prop_modinv_valid (Positive a, Positive m)
| m > 1 =
case inverse a m of
Just ainv -> (ainv * a) `mod` m == 1
Nothing -> True
| otherwise = True
prop_sqrti_valid (Positive i) = l*l <= i && i <= u*u where (l, u) = sqrti i
prop_generate_prime_valid i =
-- becuase of the next naive test, we can't generate easily number above 32 bits
-- otherwise it slows down the tests to uselessness. when AKS or ECPP is implemented
-- we can revisit the number here
let p = withAleasInteger rng i (\g -> generatePrime g 32) in
-- FIXME test if p is around 32 bits
primalityTestNaive p
prop_miller_rabin_valid i
| i <= 3 = True
| otherwise =
-- miller rabin only returns with certitude that the integer is composite.
let b = withAleasInteger rng i (\g -> isProbablyPrime g i) in
(b == False && primalityTestNaive i == False) || b == True
withAleasInteger rng i f = case reseed (i2osp (if i < 0 then -i else i)) rng of
Left _ -> error "impossible"
Right rng' -> case f rng' of
Left _ -> error "impossible"
Right v -> fst v
-}
newtype RSAMessage = RSAMessage B.ByteString deriving (Show, Eq)
instance Arbitrary RSAMessage where
arbitrary = do
sz <- choose (0, 128 - 11)
ws <- replicateM sz (choose (0,255) :: Gen Int)
return $ RSAMessage $ B.pack $ map fromIntegral ws
{- this is a just test rng. this is absolutely not a serious RNG. DO NOT use elsewhere -}
data Rng = Rng (Int, Int)
getByte :: Rng -> (Word8, Rng)
getByte (Rng (mz, mw)) =
let mz2 = 36969 * (mz `mod` 65536) in
let mw2 = 18070 * (mw `mod` 65536) in
(fromIntegral (mz2 + mw2), Rng (mz2, mw2))
getBytes 0 rng = ([], rng)
getBytes n rng =
let (b, rng') = getByte rng in
let (l, rng'') = getBytes (n-1) rng' in
(b:l, rng'')
instance CryptoRandomGen Rng where
newGen _ = Right (Rng (2,3))
genSeedLength = 0
genBytes len g = Right $ first B.pack $ getBytes len g
reseed bs (Rng (a,b)) = Right $ Rng (fromIntegral a', b) where
a' = ((fromIntegral a) + i * 36969) `mod` 65536
i = B.head bs
rng = Rng (1,2)
{-----------------------------------------------------------------------------------------------}
{- testing RSA -}
{-----------------------------------------------------------------------------------------------}
{-
prop_rsa_generate_valid (Positive i, RSAMessage msgz) =
let keysz = 64 in
let (pub,priv) = withAleasInteger rng i (\g -> RSA.generate g keysz 65537) in
let msg = B.take (keysz - 11) msgz in
(RSA.private_p priv * RSA.private_q priv == RSA.private_n priv) &&
((RSA.private_d priv * RSA.public_e pub) `mod` ((RSA.private_p priv - 1) * (RSA.private_q priv - 1)) == 1) &&
(either Left (RSA.decrypt priv . fst) $ RSA.encrypt rng pub msg) == Right msg
-}
prop_rsa_valid fast (RSAMessage msg) =
(either Left (RSA.decrypt pk . fst) $ RSA.encrypt rng rsaPublickey msg) == Right msg
where pk = if fast then rsaPrivatekey else rsaPrivatekey { RSA.private_p = 0, RSA.private_q = 0 }
prop_rsa_fast_valid = prop_rsa_valid True
prop_rsa_slow_valid = prop_rsa_valid False
prop_rsa_sign_valid fast (RSAMessage msg) = (either Left (\smsg -> verify msg smsg) $ sign msg) == Right True
where
verify = RSA.verify (SHA1.hash) sha1desc rsaPublickey
sign = RSA.sign (SHA1.hash) sha1desc pk
sha1desc = B.pack [0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03, 0x02,0x1a,0x05,0x00,0x04,0x14]
pk = if fast then rsaPrivatekey else rsaPrivatekey { RSA.private_p = 0, RSA.private_q = 0 }
prop_rsa_sign_fast_valid = prop_rsa_sign_valid True
prop_rsa_sign_slow_valid = prop_rsa_sign_valid False
rsaPrivatekey = RSA.PrivateKey
{ RSA.private_size = 128
, RSA.private_n = 140203425894164333410594309212077886844966070748523642084363106504571537866632850620326769291612455847330220940078873180639537021888802572151020701352955762744921926221566899281852945861389488419179600933178716009889963150132778947506523961974222282461654256451508762805133855866018054403911588630700228345151
, RSA.private_d = 133764127300370985476360382258931504810339098611363623122953018301285450176037234703101635770582297431466449863745848961134143024057267778947569638425565153896020107107895924597628599677345887446144410702679470631826418774397895304952287674790343620803686034122942606764275835668353720152078674967983573326257
, RSA.private_p = 12909745499610419492560645699977670082358944785082915010582495768046269235061708286800087976003942261296869875915181420265794156699308840835123749375331319
, RSA.private_q = 10860278066550210927914375228722265675263011756304443428318337179619069537063135098400347475029673115805419186390580990519363257108008103841271008948795129
, RSA.private_dP = 5014229697614831746694710412330921341325464081424013940131184365711243776469716106024020620858146547161326009604054855316321928968077674343623831428796843
, RSA.private_dQ = 3095337504083058271243917403868092841421453478127022884745383831699720766632624326762288333095492075165622853999872779070009098364595318242383709601515849
, RSA.private_qinv = 11136639099661288633118187183300604127717437440459572124866697429021958115062007251843236337586667012492941414990095176435990146486852255802952814505784196
}
rsaPublickey = RSA.PublicKey
{ RSA.public_size = 128
, RSA.public_n = 140203425894164333410594309212077886844966070748523642084363106504571537866632850620326769291612455847330220940078873180639537021888802572151020701352955762744921926221566899281852945861389488419179600933178716009889963150132778947506523961974222282461654256451508762805133855866018054403911588630700228345151
, RSA.public_e = 65537
}
{-----------------------------------------------------------------------------------------------}
{- testing DSA -}
{-----------------------------------------------------------------------------------------------}
dsaParams = (p,g,q)
where
p = 0x00a8c44d7d0bbce69a39008948604b9c7b11951993a5a1a1fa995968da8bb27ad9101c5184bcde7c14fb79f7562a45791c3d80396cefb328e3e291932a17e22edd
g = 0x0bf9fe6c75d2367b88912b2252d20fdcad06b3f3a234b92863a1e30a96a123afd8e8a4b1dd953e6f5583ef8e48fc7f47a6a1c8f24184c76dba577f0fec2fcd1c
q = 0x0096674b70ef58beaaab6743d6af16bb862d18d119
dsaPrivatekey = DSA.PrivateKey
{ DSA.private_params = dsaParams
, DSA.private_x = 0x229bac7aa1c7db8121bfc050a3426eceae23fae8
}
dsaPublickey = DSA.PublicKey
{ DSA.public_params = dsaParams
, DSA.public_y = 0x4fa505e86e32922f1fa1702a120abdba088bb4be801d4c44f7fc6b9094d85cd52c429cbc2b39514e30909b31e2e2e0752b0fc05c1a7d9c05c3e52e49e6edef4c
}
prop_dsa_valid (RSAMessage msg) =
case DSA.verify signature (SHA1.hash) dsaPublickey msg of
Left err -> False
Right b -> b
where
Right (signature, rng') = DSA.sign rng (SHA1.hash) dsaPrivatekey msg
{-----------------------------------------------------------------------------------------------}
{- testing DH -}
{-----------------------------------------------------------------------------------------------}
instance Arbitrary DH.PrivateNumber where
arbitrary = fromIntegral <$> (suchThat (arbitrary :: Gen Integer) (\x -> x >= 1))
prop_dh_valid (xa, xb) = sa == sb
where
sa = DH.getShared dhparams xa yb
sb = DH.getShared dhparams xb ya
yb = DH.generatePublic dhparams xb
ya = DH.generatePublic dhparams xa
dhparams = (11, 7)
{-----------------------------------------------------------------------------------------------}
{- testing AES -}
{-----------------------------------------------------------------------------------------------}
data AES128Message = AES128Message B.ByteString B.ByteString B.ByteString deriving (Show, Eq)
data AES192Message = AES192Message B.ByteString B.ByteString B.ByteString deriving (Show, Eq)
data AES256Message = AES256Message B.ByteString B.ByteString B.ByteString deriving (Show, Eq)
arbitraryAES keysize = do
sz <- choose (1, 12)
ws <- replicateM (sz*16) (choose (0,255) :: Gen Int)
key <- replicateM keysize (choose (0,255) :: Gen Int)
iv <- replicateM 16 (choose (0,255) :: Gen Int)
return (ws, key, iv)
instance Arbitrary AES128Message where
arbitrary = do
(ws, key, iv) <- arbitraryAES 16
return $ AES128Message (B.pack $ map fromIntegral key)
(B.pack $ map fromIntegral iv)
(B.pack $ map fromIntegral ws)
instance Arbitrary AES192Message where
arbitrary = do
(ws, key, iv) <- arbitraryAES 24
return $ AES192Message (B.pack $ map fromIntegral key)
(B.pack $ map fromIntegral iv)
(B.pack $ map fromIntegral ws)
instance Arbitrary AES256Message where
arbitrary = do
(ws, key, iv) <- arbitraryAES 32
return $ AES256Message (B.pack $ map fromIntegral key)
(B.pack $ map fromIntegral iv)
(B.pack $ map fromIntegral ws)
prop_ecb_valid k msg = AES.decrypt k (AES.encrypt k msg) == msg
prop_cbc_valid k iv msg = AES.decryptCBC k iv (AES.encryptCBC k iv msg) == msg
prop_aes128_ecb_valid (AES128Message key _ msg) =
let (Right k) = AES.initKey128 key in
prop_ecb_valid k msg
prop_aes192_ecb_valid (AES192Message key _ msg) =
let (Right k) = AES.initKey192 key in
prop_ecb_valid k msg
prop_aes256_ecb_valid (AES256Message key _ msg) =
let (Right k) = AES.initKey256 key in
prop_ecb_valid k msg
prop_aes128_cbc_valid (AES128Message key iv msg) =
let (Right k) = AES.initKey128 key in
prop_cbc_valid k iv msg
prop_aes192_cbc_valid (AES192Message key iv msg) =
let (Right k) = AES.initKey192 key in
prop_cbc_valid k iv msg
prop_aes256_cbc_valid (AES256Message key iv msg) =
let (Right k) = AES.initKey256 key in
prop_cbc_valid k iv msg
{-----------------------------------------------------------------------------------------------}
{- main -}
{-----------------------------------------------------------------------------------------------}
symCipherExpectedTests = testGroup "symmetric cipher KAT" katTests
symCipherMarshallTests = testGroup "symmetric cipher marshall"
[ testProperty "AES128 (ECB)" prop_aes128_ecb_valid
, testProperty "AES128 (CBC)" prop_aes128_cbc_valid
, testProperty "AES192 (ECB)" prop_aes192_ecb_valid
, testProperty "AES192 (CBC)" prop_aes192_cbc_valid
, testProperty "AES256 (ECB)" prop_aes256_ecb_valid
, testProperty "AES256 (CBC)" prop_aes256_cbc_valid
]
asymEncryptionTests = testGroup "assymmetric cipher encryption"
[ testProperty "RSA (slow)" prop_rsa_slow_valid
, testProperty "RSA (fast)" prop_rsa_fast_valid
]
asymSignatureTests = testGroup "assymmetric cipher signature"
[ testProperty "RSA (slow)" prop_rsa_sign_slow_valid
, testProperty "RSA (fast)" prop_rsa_sign_fast_valid
, testProperty "DSA" prop_dsa_valid
]
asymOtherTests = testGroup "assymetric other tests"
[ testProperty "DH valid" prop_dh_valid
]
arithmeticTests = testGroup "arithmetic"
[]
{- run_test "RSA generate" prop_rsa_generate_valid -}
tests :: [Test]
tests =
[ symCipherExpectedTests
, symCipherMarshallTests
, testGroup "AES" aesTests
, arithmeticTests
, asymEncryptionTests
, asymSignatureTests
, asymOtherTests
]
main = defaultMain tests
{-
-- Number Tests
run_test "gcde binary valid" prop_gcde_binary_valid
run_test "exponantiation RTL valid" prop_modexp_rtl_valid
run_test "inverse valid" prop_modinv_valid
run_test "sqrt integer valid" prop_sqrti_valid
run_test "primality test Miller Rabin" prop_miller_rabin_valid
run_test "Generate prime" prop_generate_prime_valid
-}
|