File: x86ni.c

package info (click to toggle)
haskell-cryptocipher 0.3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 256 kB
  • sloc: haskell: 2,916; ansic: 142; makefile: 3
file content (191 lines) | stat: -rw-r--r-- 6,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
 * Copyright (c) 2012 Vincent Hanquez <vincent@snarc.org>
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of his contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
#include <wmmintrin.h>
#include <tmmintrin.h>
#include "aes.h"

static __m128i aes_128_key_expansion(__m128i key, __m128i keygened)
{
	keygened = _mm_shuffle_epi32(keygened, _MM_SHUFFLE(3,3,3,3));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	return _mm_xor_si128(key, keygened);
}

void aes_generate_key128(aes_key128 *key, uint8_t *ikey)
{
	__m128i *k = (__m128i *) key->_data;
	k[0] = _mm_loadu_si128((const __m128i*) ikey);

#define AES_128_key_exp(K, RCON) aes_128_key_expansion(K, _mm_aeskeygenassist_si128(K, RCON))
	k[1]  = AES_128_key_exp(k[0], 0x01);
	k[2]  = AES_128_key_exp(k[1], 0x02);
	k[3]  = AES_128_key_exp(k[2], 0x04);
	k[4]  = AES_128_key_exp(k[3], 0x08);
	k[5]  = AES_128_key_exp(k[4], 0x10);
	k[6]  = AES_128_key_exp(k[5], 0x20);
	k[7]  = AES_128_key_exp(k[6], 0x40);
	k[8]  = AES_128_key_exp(k[7], 0x80);
	k[9]  = AES_128_key_exp(k[8], 0x1B);
	k[10] = AES_128_key_exp(k[9], 0x36);

	/* generate decryption keys in reverse order.
	 * k[10] is shared by last encryption and first decryption rounds
	 * k[20] is shared by first encryption round (and is the original user key) */
	k[11] = _mm_aesimc_si128(k[9]);
	k[12] = _mm_aesimc_si128(k[8]);
	k[13] = _mm_aesimc_si128(k[7]);
	k[14] = _mm_aesimc_si128(k[6]);
	k[15] = _mm_aesimc_si128(k[5]);
	k[16] = _mm_aesimc_si128(k[4]);
	k[17] = _mm_aesimc_si128(k[3]);
	k[18] = _mm_aesimc_si128(k[2]);
	k[19] = _mm_aesimc_si128(k[1]);
}

#define PRELOAD_ENC_KEYS(k) \
	__m128i K0  = k[0]; __m128i K1  = k[1]; __m128i K2  = k[2]; __m128i K3  = k[3]; \
	__m128i K4  = k[4]; __m128i K5  = k[5]; __m128i K6  = k[6]; __m128i K7  = k[7]; \
	__m128i K8  = k[8]; __m128i K9  = k[9]; __m128i K10 = k[10];

#define DO_ENC_BLOCK(m) \
	m = _mm_xor_si128(m, K0); \
	m = _mm_aesenc_si128(m, K1); \
	m = _mm_aesenc_si128(m, K2); \
	m = _mm_aesenc_si128(m, K3); \
	m = _mm_aesenc_si128(m, K4); \
	m = _mm_aesenc_si128(m, K5); \
	m = _mm_aesenc_si128(m, K6); \
	m = _mm_aesenc_si128(m, K7); \
	m = _mm_aesenc_si128(m, K8); \
	m = _mm_aesenc_si128(m, K9); \
	m = _mm_aesenclast_si128(m, K10);

#define PRELOAD_DEC_KEYS(k) \
	__m128i K0  = k[10+0]; __m128i K1  = k[10+1]; __m128i K2  = k[10+2]; __m128i K3  = k[10+3]; \
	__m128i K4  = k[10+4]; __m128i K5  = k[10+5]; __m128i K6  = k[10+6]; __m128i K7  = k[10+7]; \
	__m128i K8  = k[10+8]; __m128i K9  = k[10+9]; __m128i K10 = k[0];

#define DO_DEC_BLOCK(m) \
	m = _mm_xor_si128(m, K0); \
	m = _mm_aesdec_si128(m, K1); \
	m = _mm_aesdec_si128(m, K2); \
	m = _mm_aesdec_si128(m, K3); \
	m = _mm_aesdec_si128(m, K4); \
	m = _mm_aesdec_si128(m, K5); \
	m = _mm_aesdec_si128(m, K6); \
	m = _mm_aesdec_si128(m, K7); \
	m = _mm_aesdec_si128(m, K8); \
	m = _mm_aesdec_si128(m, K9); \
	m = _mm_aesdeclast_si128(m, K10);

void aes_encrypt(uint8_t *out, aes_key128 *key, uint8_t *in, uint32_t blocks)
{
	uint32_t i;
	uint64_t _out[2] __attribute__((aligned(16)));
	__m128i *k = (__m128i *) key->_data;

	PRELOAD_ENC_KEYS(k);

	for (i = 0; i < blocks; i++, in += 16, out += 16) {
		__m128i m = _mm_loadu_si128((__m128i *) in);

		DO_ENC_BLOCK(m);

		_mm_store_si128((__m128i *) _out, m);
		((uint64_t *) out)[0] = (_out[0]);
		((uint64_t *) out)[1] = (_out[1]);
	}
}

void aes_decrypt(uint8_t *out, aes_key128 *key, uint8_t *in, uint32_t blocks)
{
	uint32_t i;
	uint64_t _out[2] __attribute__((aligned(16)));
	__m128i *k = (__m128i *) key->_data;

	PRELOAD_DEC_KEYS(k);

	for (i = 0; i < blocks; i++, in += 16, out += 16) {
		__m128i m = _mm_loadu_si128((__m128i *) in);

		DO_DEC_BLOCK(m);

		_mm_store_si128((__m128i *) _out, m);
		((uint64_t *) out)[0] = (_out[0]);
		((uint64_t *) out)[1] = (_out[1]);
	}
}

void aes_encrypt_cbc(uint8_t *out, aes_key128 *key, uint8_t *_iv, uint8_t *in, uint32_t blocks)
{
	uint32_t i;
	uint64_t _out[2] __attribute__((aligned(16)));
	__m128i *k = (__m128i *) key->_data;
	__m128i iv = _mm_loadu_si128((__m128i *) _iv);

	PRELOAD_ENC_KEYS(k);

	for (i = 0; i < blocks; i++, in += 16, out += 16) {
		__m128i m = _mm_loadu_si128((__m128i *) in);
		m = _mm_xor_si128(m, iv);

		DO_ENC_BLOCK(m);

		_mm_store_si128((__m128i *) _out, m);
		iv = m;
		((uint64_t *) out)[0] = (_out[0]);
		((uint64_t *) out)[1] = (_out[1]);
	}
}

void aes_decrypt_cbc(uint8_t *out, aes_key128 *key, uint8_t *_iv, uint8_t *in, uint32_t blocks)
{
	uint32_t i;
	uint64_t _out[2] __attribute__((aligned(16)));
	__m128i *k = (__m128i *) key->_data;
	__m128i iv = _mm_loadu_si128((__m128i *) _iv);

	PRELOAD_DEC_KEYS(k);

	for (i = 0; i < blocks; i++, in += 16, out += 16) {
		__m128i m = _mm_loadu_si128((__m128i *) in);
		__m128i ivnext = m;

		DO_DEC_BLOCK(m);
		m = _mm_xor_si128(m, iv);

		_mm_store_si128((__m128i *) _out, m);
		iv = ivnext;
		((uint64_t *) out)[0] = (_out[0]);
		((uint64_t *) out)[1] = (_out[1]);
	}
}