File: Cryptol.cry

package info (click to toggle)
haskell-cryptol 2.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,672 kB
  • ctags: 102
  • sloc: haskell: 20,337; yacc: 599; makefile: 5
file content (331 lines) | stat: -rw-r--r-- 8,849 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 * Copyright (c) 2013-2016 Galois, Inc.
 * Distributed under the terms of the BSD3 license (see LICENSE file)
 */

module Cryptol where

/**
 * The value corresponding to a numeric type.
 */
primitive demote : {val, bits} (fin val, fin bits, bits >= width val) => [bits]

infixr 10 ||
infixr 20 &&
infix  30 ==, ===, !=, !==
infix  40 >, >=, <, <=
infixl 50 ^
infixr 60 #
infixl 70 <<, <<<, >>, >>>
infixl 80 +, -
infixl 90 *, /
infixr 95 ^^
infixl 100 @, @@, !, !!

/**
 * Add two values.
 *  * For words, addition uses modulo arithmetic.
 *  * Structured values are added element-wise.
 */
primitive (+) : {a} (Arith a) => a -> a -> a

/**
 * For words, subtraction uses modulo arithmetic.
 * Structured values are subtracted element-wise. Defined as:
 * a - b = a + negate b
 * See also: `negate'.
 */
primitive (-) : {a} (Arith a) => a -> a -> a

/**
 * For words, multiplies two words, modulus 2^^a.
 * Structured values are multiplied element-wise.
 */
primitive (*) : {a} (Arith a) => a -> a -> a

/**
 * For words, divides two words, modulus 2^^a.
 * Structured values are divided element-wise.
 */
primitive (/) : {a} (Arith a) => a -> a -> a

/**
 * For words, takes the modulus of two words, modulus 2^^a.
 * Over structured values, operates element-wise.
 * Be careful, as this will often give unexpected results due to interaction of
 * the two moduli.
 */
primitive (%) : {a} (Arith a) => a -> a -> a

/**
 * For words, takes the exponent of two words, modulus 2^^a.
 * Over structured values, operates element-wise.
 * Be careful, due to its fast-growing nature, exponentiation is prone to
 * interacting poorly with defaulting.
 */
primitive (^^) : {a} (Arith a) => a -> a -> a

/**
 * Log base two.
 *
 * For words, computes the ceiling of log, base 2, of a number.
 * Over structured values, operates element-wise.
 */
primitive lg2 : {a} (Arith a) => a -> a


type Bool = Bit

/**
 * The constant True. Corresponds to the bit value 1.
 */
primitive True  : Bit

/**
 * The constant False. Corresponds to the bit value 0.
 */
primitive False : Bit

/**
 * Returns the twos complement of its argument.
 * Over structured values, operates element-wise.
 * negate a = ~a + 1
 */
primitive negate : {a} (Arith a) => a -> a

/**
 * Binary complement.
 */
primitive complement : {a} a -> a

/**
 * Operator form of binary complement.
 */
(~) : {a} a -> a
(~) = complement

/**
 * Less-than. Only works on comparable arguments.
 */
primitive (<) : {a} (Cmp a) => a -> a -> Bit

/**
 * Greater-than of two comparable arguments.
 */
primitive (>) : {a} (Cmp a) => a -> a -> Bit

/**
 * Less-than or equal of two comparable arguments.
 */
primitive (<=) : {a} (Cmp a) => a -> a -> Bit

/**
 * Greater-than or equal of two comparable arguments.
 */
primitive (>=) : {a} (Cmp a) => a -> a -> Bit

/**
 * Compares any two values of the same type for equality.
 */
primitive (==) : {a} (Cmp a) => a -> a -> Bit

/**
 * Compares any two values of the same type for inequality.
 */
primitive (!=) : {a} (Cmp a) => a -> a -> Bit

/**
 * Compare the outputs of two functions for equality
 */
(===) : {a,b} (Cmp b) => (a -> b) -> (a -> b) -> (a -> Bit)
f === g = \ x -> f x == g x

/**
 * Compare the outputs of two functions for inequality
 */
(!==) : {a,b} (Cmp b) => (a -> b) -> (a -> b) -> (a -> Bit)
f !== g = \x -> f x != g x

/**
 * Returns the smaller of two comparable arguments.
 */
min : {a} (Cmp a) => a -> a -> a
min x y = if x < y then x else y

/**
 * Returns the greater of two comparable arguments.
 */
max : {a} (Cmp a) => a -> a -> a
max x y = if x > y then x else y

/**
 * Logical `and' over bits. Extends element-wise over sequences, tuples.
 */
primitive (&&) : {a} a -> a -> a

/**
 * Logical `or' over bits. Extends element-wise over sequences, tuples.
 */
primitive (||) : {a} a -> a -> a

/**
 * Logical `exclusive or' over bits. Extends element-wise over sequences, tuples.
 */
primitive (^) : {a} a -> a -> a

/**
 * Gives an arbitrary shaped value whose bits are all False.
 * ~zero likewise gives an arbitrary shaped value whose bits are all True.
 */
primitive zero : {a} a

/**
 * Left shift.  The first argument is the sequence to shift, the second is the
 * number of positions to shift by.
*/
primitive (<<) : {a, b, c} (fin b) => [a]c -> [b] -> [a]c

/**
 * Right shift.  The first argument is the sequence to shift, the second is the
 * number of positions to shift by.
 */
primitive (>>) : {a, b, c} (fin b) => [a]c -> [b] -> [a]c

/**
 * Left rotate.  The first argument is the sequence to rotate, the second is the
 * number of positions to rotate by.
 */
primitive (<<<) : {a, b, c} (fin a, fin b) => [a]c -> [b] -> [a]c

/**
 * Right rotate.  The first argument is the sequence to rotate, the second is
 * the number of positions to rotate by.
 */
primitive (>>>) : {a, b, c} (fin a, fin b) => [a]c -> [b] -> [a]c

primitive (#) : {front, back, a} (fin front) => [front]a -> [back]a
                                             -> [front + back] a


/**
 * Split a sequence into a tuple of sequences.
 */
primitive splitAt : {front, back, a} (fin front) => [front + back]a
                                                 -> ([front]a, [back]a)

/**
 * Joins sequences.
 */
primitive join : {parts, each, a} (fin each) => [parts][each]a
                                             -> [parts * each]a

/**
 * Splits a sequence into 'parts' groups with 'each' elements.
 */
primitive split : {parts, each, a} (fin each) => [parts * each]a
                                              -> [parts][each]a

/**
 * Reverses the elements in a sequence.
 */
primitive reverse : {a, b} (fin a) => [a]b -> [a]b

/**
 * Transposes an [a][b] matrix into a [b][a] matrix.
 */
primitive transpose : {a, b, c} [a][b]c -> [b][a]c

/**
 * Index operator.  The first argument is a sequence.  The second argument is
 * the zero-based index of the element to select from the sequence.
 */
primitive (@) : {a, b, c} (fin c) => [a]b -> [c] -> b

/**
 * Bulk index operator.  The first argument is a sequence.  The second argument
 * is a sequence of the zero-based indices of the elements to select.
 */
primitive (@@) : {a, b, c, d} (fin d) => [a]b -> [c][d] -> [c]b

/**
 * Reverse index operator.  The first argument is a finite sequence.  The second
 * argument is the zero-based index of the element to select, starting from the
 * end of the sequence.
 */
primitive (!) : {a, b, c} (fin a, fin c) => [a]b -> [c] -> b

/**
 * Bulk reverse index operator.  The first argument is a finite sequence.  The
 * second argument is a sequence of the zero-based indices of the elements to
 z select, starting from the end of the sequence.
 */
primitive (!!) : {a, b, c, d} (fin a, fin d) => [a]b -> [c][d] -> [c]b

primitive fromThen : {first, next, bits, len}
                     ( fin first, fin next, fin bits
                     , bits >= width first, bits >= width next
                     , lengthFromThen first next bits == len) => [len][bits]

primitive fromTo : {first, last, bits} (fin last, fin bits, last >= first,
                              bits >= width last) => [1 + (last - first)][bits]

primitive fromThenTo : {first, next, last, bits, len} (fin first, fin next,
                        fin last, fin bits, bits >= width first,
                        bits >= width next, bits >= width last,
                        lengthFromThenTo first next last == len) => [len][bits]

primitive infFrom : {bits} (fin bits) => [bits] -> [inf][bits]

primitive infFromThen : {bits} (fin bits) => [bits] -> [bits] -> [inf][bits]

primitive error : {at, len} (fin len) => [len][8] -> at


/**
 * Performs multiplication of polynomials over GF(2).
 */
primitive pmult : {a, b} (fin a, fin b) => [a] -> [b] -> [max 1 (a + b) - 1]

/**
 * Performs division of polynomials over GF(2).
 */
primitive pdiv : {a, b} (fin a, fin b) => [a] -> [b] -> [a]

/**
 * Performs modulus of polynomials over GF(2).
 */
primitive pmod : {a, b} (fin a, fin b) => [a] -> [1 + b] -> [b]

/**
 * Generates random values from a seed.  When called with a function, currently
 * generates a function that always returns zero.
 */
primitive random : {a} [256] -> a

type String n = [n][8]
type Word n = [n]
type Char   = [8]

take : {front,back,elem} (fin front) => [front + back] elem -> [front] elem
take (x # _) = x

drop : {front,back,elem} (fin front) => [front + back] elem -> [back] elem
drop ((_ : [front] _) # y) = y

tail : {a, b} [1 + a]b -> [a]b
tail xs = drop`{1} xs

width : {bits,len,elem} (fin len, fin bits, bits >= width len) => [len] elem -> [bits]
width _ = `len

undefined : {a} a
undefined = error "undefined"

groupBy : {each,parts,elem} (fin each) =>
  [parts * each] elem -> [parts][each]elem
groupBy = split`{parts=parts}

/**
 * Define the base 2 logarithm function in terms of width
 */
type lg2 n = width (max n 1 - 1)