File: Prime.hs

package info (click to toggle)
haskell-crypton 1.0.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,548 kB
  • sloc: haskell: 26,764; ansic: 22,294; makefile: 6
file content (624 lines) | stat: -rw-r--r-- 11,227 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
{-# LANGUAGE BangPatterns #-}

-- |
-- Module      : Crypto.Number.Prime
-- License     : BSD-style
-- Maintainer  : Vincent Hanquez <vincent@snarc.org>
-- Stability   : experimental
-- Portability : Good
module Crypto.Number.Prime (
    generatePrime,
    generateSafePrime,
    isProbablyPrime,
    findPrimeFrom,
    findPrimeFromWith,
    primalityTestMillerRabin,
    primalityTestNaive,
    primalityTestFermat,
    isCoprime,
) where

import Crypto.Error
import Crypto.Number.Basic (gcde, sqrti)
import Crypto.Number.Compat
import Crypto.Number.Generate
import Crypto.Number.ModArithmetic (expSafe)
import Crypto.Random.Probabilistic
import Crypto.Random.Types

import Data.Bits

-- | Returns if the number is probably prime.
-- First a list of small primes are implicitely tested for divisibility,
-- then a fermat primality test is used with arbitrary numbers and
-- then the Miller Rabin algorithm is used with an accuracy of 30 recursions.
isProbablyPrime :: Integer -> Bool
isProbablyPrime !n
    | any (\p -> p `divides` n) (filter (< n) firstPrimes) = False
    | n >= 2 && n <= 2903 = True
    | primalityTestFermat 50 (n `div` 2) n =
        primalityTestMillerRabin 30 n
    | otherwise = False

-- | Generate a prime number of the required bitsize (i.e. in the range
-- [2^(b-1)+2^(b-2), 2^b)).
--
-- May throw a 'CryptoError_PrimeSizeInvalid' if the requested size is less
-- than 5 bits, as the smallest prime meeting these conditions is 29.
-- This function requires that the two highest bits are set, so that when
-- multiplied with another prime to create a key, it is guaranteed to be of
-- the proper size.
generatePrime :: MonadRandom m => Int -> m Integer
generatePrime bits = do
    if bits < 5
        then
            throwCryptoError $ CryptoFailed $ CryptoError_PrimeSizeInvalid
        else do
            sp <- generateParams bits (Just SetTwoHighest) True
            let prime = findPrimeFrom sp
            if prime < 1 `shiftL` bits
                then
                    return $ prime
                else generatePrime bits

-- | Generate a prime number of the form 2p+1 where p is also prime.
-- it is also knowed as a Sophie Germaine prime or safe prime.
--
-- The number of safe prime is significantly smaller to the number of prime,
-- as such it shouldn't be used if this number is supposed to be kept safe.
--
-- May throw a 'CryptoError_PrimeSizeInvalid' if the requested size is less than
-- 6 bits, as the smallest safe prime with the two highest bits set is 59.
generateSafePrime :: MonadRandom m => Int -> m Integer
generateSafePrime bits = do
    if bits < 6
        then
            throwCryptoError $ CryptoFailed $ CryptoError_PrimeSizeInvalid
        else do
            sp <- generateParams bits (Just SetTwoHighest) True
            let p = findPrimeFromWith (\i -> isProbablyPrime (2 * i + 1)) (sp `div` 2)
            let val = 2 * p + 1
            if val < 1 `shiftL` bits
                then
                    return $ val
                else generateSafePrime bits

-- | Find a prime from a starting point where the property hold.
findPrimeFromWith :: (Integer -> Bool) -> Integer -> Integer
findPrimeFromWith prop !n
    | even n = findPrimeFromWith prop (n + 1)
    | otherwise =
        if not (isProbablyPrime n)
            then findPrimeFromWith prop (n + 2)
            else
                if prop n
                    then n
                    else findPrimeFromWith prop (n + 2)

-- | Find a prime from a starting point with no specific property.
findPrimeFrom :: Integer -> Integer
findPrimeFrom n =
    case gmpNextPrime n of
        GmpSupported p -> p
        GmpUnsupported -> findPrimeFromWith (\_ -> True) n

-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: Int -> Integer -> Bool
primalityTestMillerRabin tries !n =
    case gmpTestPrimeMillerRabin tries n of
        GmpSupported b -> b
        GmpUnsupported -> probabilistic run
  where
    run
        | n <= 3 = error "Miller-Rabin requires tested value to be > 3"
        | even n = return False
        | tries <= 0 = error "Miller-Rabin tries need to be > 0"
        | otherwise = loop <$> generateTries tries

    !nm1 = n - 1
    !nm2 = n - 2

    (!s, !d) = (factorise 0 nm1)

    generateTries 0 = return []
    generateTries t = do
        v <- generateBetween 2 nm2
        vs <- generateTries (t - 1)
        return (v : vs)

    -- factorise n-1 into the form 2^s*d
    factorise :: Integer -> Integer -> (Integer, Integer)
    factorise !si !vi
        | vi `testBit` 0 = (si, vi)
        | otherwise = factorise (si + 1) (vi `shiftR` 1) -- probably faster to not shift v continuously, but just once.
    expmod = expSafe

    -- when iteration reach zero, we have a probable prime
    loop [] = True
    loop (w : ws) =
        let x = expmod w d n
         in if x == (1 :: Integer) || x == nm1
                then loop ws
                else loop' ws ((x * x) `mod` n) 1

    -- loop from 1 to s-1. if we reach the end then it's composite
    loop' ws !x2 !r
        | r == s = False
        | x2 == 1 = False
        | x2 /= nm1 = loop' ws ((x2 * x2) `mod` n) (r + 1)
        | otherwise = loop ws

{-
    n < z -> witness to test
              1373653 [2,3]
              9080191 [31,73]
              4759123141 [2,7,61]
              2152302898747 [2,3,5,7,11]
              3474749660383 [2,3,5,7,11,13]
              341550071728321 [2,3,5,7,11,13,17]
-}

-- | Probabilitic Test using Fermat primility test.
-- Beware of Carmichael numbers that are Fermat liars, i.e. this test
-- is useless for them. always combines with some other test.
primalityTestFermat
    :: Int
    -- ^ number of iterations of the algorithm
    -> Integer
    -- ^ starting a
    -> Integer
    -- ^ number to test for primality
    -> Bool
primalityTestFermat n a p = and $ map expTest [a .. (a + fromIntegral n)]
  where
    !pm1 = p - 1
    expTest i = expSafe i pm1 p == 1

-- | Test naively is integer is prime.
-- while naive, we skip even number and stop iteration at i > sqrt(n)
primalityTestNaive :: Integer -> Bool
primalityTestNaive n
    | n <= 1 = False
    | n == 2 = True
    | even n = False
    | otherwise = search 3
  where
    !ubound = snd $ sqrti n
    search !i
        | i > ubound = True
        | i `divides` n = False
        | otherwise = search (i + 2)

-- | Test is two integer are coprime to each other
isCoprime :: Integer -> Integer -> Bool
isCoprime m n = case gcde m n of (_, _, d) -> d == 1

-- | List of the first primes till 2903.
firstPrimes :: [Integer]
firstPrimes =
    [ 2
    , 3
    , 5
    , 7
    , 11
    , 13
    , 17
    , 19
    , 23
    , 29
    , 31
    , 37
    , 41
    , 43
    , 47
    , 53
    , 59
    , 61
    , 67
    , 71
    , 73
    , 79
    , 83
    , 89
    , 97
    , 101
    , 103
    , 107
    , 109
    , 113
    , 127
    , 131
    , 137
    , 139
    , 149
    , 151
    , 157
    , 163
    , 167
    , 173
    , 179
    , 181
    , 191
    , 193
    , 197
    , 199
    , 211
    , 223
    , 227
    , 229
    , 233
    , 239
    , 241
    , 251
    , 257
    , 263
    , 269
    , 271
    , 277
    , 281
    , 283
    , 293
    , 307
    , 311
    , 313
    , 317
    , 331
    , 337
    , 347
    , 349
    , 353
    , 359
    , 367
    , 373
    , 379
    , 383
    , 389
    , 397
    , 401
    , 409
    , 419
    , 421
    , 431
    , 433
    , 439
    , 443
    , 449
    , 457
    , 461
    , 463
    , 467
    , 479
    , 487
    , 491
    , 499
    , 503
    , 509
    , 521
    , 523
    , 541
    , 547
    , 557
    , 563
    , 569
    , 571
    , 577
    , 587
    , 593
    , 599
    , 601
    , 607
    , 613
    , 617
    , 619
    , 631
    , 641
    , 643
    , 647
    , 653
    , 659
    , 661
    , 673
    , 677
    , 683
    , 691
    , 701
    , 709
    , 719
    , 727
    , 733
    , 739
    , 743
    , 751
    , 757
    , 761
    , 769
    , 773
    , 787
    , 797
    , 809
    , 811
    , 821
    , 823
    , 827
    , 829
    , 839
    , 853
    , 857
    , 859
    , 863
    , 877
    , 881
    , 883
    , 887
    , 907
    , 911
    , 919
    , 929
    , 937
    , 941
    , 947
    , 953
    , 967
    , 971
    , 977
    , 983
    , 991
    , 997
    , 1009
    , 1013
    , 1019
    , 1021
    , 1031
    , 1033
    , 1039
    , 1049
    , 1051
    , 1061
    , 1063
    , 1069
    , 1087
    , 1091
    , 1093
    , 1097
    , 1103
    , 1109
    , 1117
    , 1123
    , 1129
    , 1151
    , 1153
    , 1163
    , 1171
    , 1181
    , 1187
    , 1193
    , 1201
    , 1213
    , 1217
    , 1223
    , 1229
    , 1231
    , 1237
    , 1249
    , 1259
    , 1277
    , 1279
    , 1283
    , 1289
    , 1291
    , 1297
    , 1301
    , 1303
    , 1307
    , 1319
    , 1321
    , 1327
    , 1361
    , 1367
    , 1373
    , 1381
    , 1399
    , 1409
    , 1423
    , 1427
    , 1429
    , 1433
    , 1439
    , 1447
    , 1451
    , 1453
    , 1459
    , 1471
    , 1481
    , 1483
    , 1487
    , 1489
    , 1493
    , 1499
    , 1511
    , 1523
    , 1531
    , 1543
    , 1549
    , 1553
    , 1559
    , 1567
    , 1571
    , 1579
    , 1583
    , 1597
    , 1601
    , 1607
    , 1609
    , 1613
    , 1619
    , 1621
    , 1627
    , 1637
    , 1657
    , 1663
    , 1667
    , 1669
    , 1693
    , 1697
    , 1699
    , 1709
    , 1721
    , 1723
    , 1733
    , 1741
    , 1747
    , 1753
    , 1759
    , 1777
    , 1783
    , 1787
    , 1789
    , 1801
    , 1811
    , 1823
    , 1831
    , 1847
    , 1861
    , 1867
    , 1871
    , 1873
    , 1877
    , 1879
    , 1889
    , 1901
    , 1907
    , 1913
    , 1931
    , 1933
    , 1949
    , 1951
    , 1973
    , 1979
    , 1987
    , 1993
    , 1997
    , 1999
    , 2003
    , 2011
    , 2017
    , 2027
    , 2029
    , 2039
    , 2053
    , 2063
    , 2069
    , 2081
    , 2083
    , 2087
    , 2089
    , 2099
    , 2111
    , 2113
    , 2129
    , 2131
    , 2137
    , 2141
    , 2143
    , 2153
    , 2161
    , 2179
    , 2203
    , 2207
    , 2213
    , 2221
    , 2237
    , 2239
    , 2243
    , 2251
    , 2267
    , 2269
    , 2273
    , 2281
    , 2287
    , 2293
    , 2297
    , 2309
    , 2311
    , 2333
    , 2339
    , 2341
    , 2347
    , 2351
    , 2357
    , 2371
    , 2377
    , 2381
    , 2383
    , 2389
    , 2393
    , 2399
    , 2411
    , 2417
    , 2423
    , 2437
    , 2441
    , 2447
    , 2459
    , 2467
    , 2473
    , 2477
    , 2503
    , 2521
    , 2531
    , 2539
    , 2543
    , 2549
    , 2551
    , 2557
    , 2579
    , 2591
    , 2593
    , 2609
    , 2617
    , 2621
    , 2633
    , 2647
    , 2657
    , 2659
    , 2663
    , 2671
    , 2677
    , 2683
    , 2687
    , 2689
    , 2693
    , 2699
    , 2707
    , 2711
    , 2713
    , 2719
    , 2729
    , 2731
    , 2741
    , 2749
    , 2753
    , 2767
    , 2777
    , 2789
    , 2791
    , 2797
    , 2801
    , 2803
    , 2819
    , 2833
    , 2837
    , 2843
    , 2851
    , 2857
    , 2861
    , 2879
    , 2887
    , 2897
    , 2903
    ]

{-# INLINE divides #-}
divides :: Integer -> Integer -> Bool
divides i n = n `mod` i == 0