1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
-- |
-- Module : Crypto.PubKey.ElGamal
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
--
-- This module is a work in progress. do not use:
-- it might eat your dog, your data or even both.
--
-- TODO: provide a mapping between integer and ciphertext
-- generate numbers correctly
module Crypto.PubKey.ElGamal (
Params,
PublicNumber,
PrivateNumber,
EphemeralKey (..),
SharedKey,
Signature,
-- * Generation
generatePrivate,
generatePublic,
-- * Encryption and decryption with no scheme
encryptWith,
encrypt,
decrypt,
-- * Signature primitives
signWith,
sign,
-- * Verification primitives
verify,
) where
import Crypto.Hash
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Crypto.Internal.Imports
import Crypto.Number.Basic (gcde)
import Crypto.Number.Generate (generateMax)
import Crypto.Number.ModArithmetic (expFast, expSafe, inverse)
import Crypto.Number.Serialize (os2ip)
import Crypto.PubKey.DH (
Params (..),
PrivateNumber (..),
PublicNumber (..),
SharedKey (..),
)
import Crypto.Random.Types
import Data.Maybe (fromJust)
-- | ElGamal Signature
data Signature = Signature (Integer, Integer)
-- | ElGamal Ephemeral key. also called Temporary key.
newtype EphemeralKey = EphemeralKey Integer
deriving (NFData)
-- | generate a private number with no specific property
-- this number is usually called a and need to be between
-- 0 and q (order of the group G).
generatePrivate :: MonadRandom m => Integer -> m PrivateNumber
generatePrivate q = PrivateNumber <$> generateMax q
-- | generate an ephemeral key which is a number with no specific property,
-- and need to be between 0 and q (order of the group G).
generateEphemeral :: MonadRandom m => Integer -> m EphemeralKey
generateEphemeral q = toEphemeral <$> generatePrivate q
where
toEphemeral (PrivateNumber n) = EphemeralKey n
-- | generate a public number that is for the other party benefits.
-- this number is usually called h=g^a
generatePublic :: Params -> PrivateNumber -> PublicNumber
generatePublic (Params p g _) (PrivateNumber a) = PublicNumber $ expSafe g a p
-- | encrypt with a specified ephemeral key
-- do not reuse ephemeral key.
encryptWith
:: EphemeralKey -> Params -> PublicNumber -> Integer -> (Integer, Integer)
encryptWith (EphemeralKey b) (Params p g _) (PublicNumber h) m = (c1, c2)
where
s = expSafe h b p
c1 = expSafe g b p
c2 = (s * m) `mod` p
-- | encrypt a message using params and public keys
-- will generate b (called the ephemeral key)
encrypt
:: MonadRandom m => Params -> PublicNumber -> Integer -> m (Integer, Integer)
encrypt params@(Params p _ _) public m = (\b -> encryptWith b params public m) <$> generateEphemeral q
where
q = p - 1 -- p is prime, hence order of the group is p-1
-- | decrypt message
decrypt :: Params -> PrivateNumber -> (Integer, Integer) -> Integer
decrypt (Params p _ _) (PrivateNumber a) (c1, c2) = (c2 * sm1) `mod` p
where
s = expSafe c1 a p
sm1 = fromJust $ inverse s p -- always inversible in Zp
-- | sign a message with an explicit k number
--
-- if k is not appropriate, then no signature is returned.
--
-- with some appropriate value of k, the signature generation can fail,
-- and no signature is returned. User of this function need to retry
-- with a different k value.
signWith
:: (ByteArrayAccess msg, HashAlgorithm hash)
=> Integer
-- ^ random number k, between 0 and p-1 and gcd(k,p-1)=1
-> Params
-- ^ DH params (p,g)
-> PrivateNumber
-- ^ DH private key
-> hash
-- ^ collision resistant hash algorithm
-> msg
-- ^ message to sign
-> Maybe Signature
signWith k (Params p g _) (PrivateNumber x) hashAlg msg
| k >= p - 1 || d > 1 = Nothing -- gcd(k,p-1) is not 1
| s == 0 = Nothing
| otherwise = Just $ Signature (r, s)
where
r = expSafe g k p
h = os2ip $ hashWith hashAlg msg
s = ((h - x * r) * kInv) `mod` (p - 1)
(kInv, _, d) = gcde k (p - 1)
-- | sign message
--
-- This function will generate a random number, however
-- as the signature might fail, the function will automatically retry
-- until a proper signature has been created.
sign
:: (ByteArrayAccess msg, HashAlgorithm hash, MonadRandom m)
=> Params
-- ^ DH params (p,g)
-> PrivateNumber
-- ^ DH private key
-> hash
-- ^ collision resistant hash algorithm
-> msg
-- ^ message to sign
-> m Signature
sign params@(Params p _ _) priv hashAlg msg = do
k <- generateMax (p - 1)
case signWith k params priv hashAlg msg of
Nothing -> sign params priv hashAlg msg
Just sig -> return sig
-- | verify a signature
verify
:: (ByteArrayAccess msg, HashAlgorithm hash)
=> Params
-> PublicNumber
-> hash
-> msg
-> Signature
-> Bool
verify (Params p g _) (PublicNumber y) hashAlg msg (Signature (r, s))
| or [r <= 0, r >= p, s <= 0, s >= (p - 1)] = False
| otherwise = lhs == rhs
where
h = os2ip $ hashWith hashAlg msg
lhs = expFast g h p
rhs = (expFast y r p * expFast r s p) `mod` p
|