File: F2m.hs

package info (click to toggle)
haskell-crypton 1.0.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 3,548 kB
  • sloc: haskell: 26,764; ansic: 22,294; makefile: 6
file content (127 lines) | stat: -rw-r--r-- 5,009 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
module Number.F2m (tests) where

import Crypto.Number.Basic (log2)
import Crypto.Number.F2m
import Data.Bits
import Data.Maybe
import Imports hiding ((.&.))

addTests =
    testGroup
        "addF2m"
        [ testProperty "commutative" $
            \a b -> a `addF2m` b == b `addF2m` a
        , testProperty "associative" $
            \a b c -> (a `addF2m` b) `addF2m` c == a `addF2m` (b `addF2m` c)
        , testProperty "0 is neutral" $
            \a -> a `addF2m` 0 == a
        , testProperty "nullable" $
            \a -> a `addF2m` a == 0
        , testProperty "works per bit" $
            \a b -> (a `addF2m` b) .&. b == (a .&. b) `addF2m` b
        ]

modTests =
    testGroup
        "modF2m"
        [ testProperty "idempotent" $
            \(Positive m) (NonNegative a) -> modF2m m a == modF2m m (modF2m m a)
        , testProperty "upper bound" $
            \(Positive m) (NonNegative a) -> modF2m m a < 2 ^ log2 m
        , testProperty "reach upper" $
            \(Positive m) -> let a = 2 ^ log2 m - 1 in modF2m m (m `addF2m` a) == a
        , testProperty "lower bound" $
            \(Positive m) (NonNegative a) -> modF2m m a >= 0
        , testProperty "reach lower" $
            \(Positive m) -> modF2m m m == 0
        , testProperty "additive" $
            \(Positive m) (NonNegative a) (NonNegative b) ->
                modF2m m a `addF2m` modF2m m b == modF2m m (a `addF2m` b)
        ]

mulTests =
    testGroup
        "mulF2m"
        [ testProperty "commutative" $
            \(Positive m) (NonNegative a) (NonNegative b) -> mulF2m m a b == mulF2m m b a
        , testProperty "associative" $
            \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c) ->
                mulF2m m (mulF2m m a b) c == mulF2m m a (mulF2m m b c)
        , testProperty "1 is neutral" $
            \(Positive m) (NonNegative a) -> mulF2m m a 1 == modF2m m a
        , testProperty "0 is annihilator" $
            \(Positive m) (NonNegative a) -> mulF2m m a 0 == 0
        , testProperty "distributive" $
            \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c) ->
                mulF2m m a (b `addF2m` c) == mulF2m m a b `addF2m` mulF2m m a c
        ]

squareTests =
    testGroup
        "squareF2m"
        [ testProperty "sqr(a) == a * a" $
            \(Positive m) (NonNegative a) -> mulF2m m a a == squareF2m m a
        , -- disabled because we require @m@ to be a suitable modulus and there is no
          -- way to guarantee this
          -- , testProperty "sqrt(a) * sqrt(a) = a"
          --     $ \(Positive m) (NonNegative aa) -> let a = sqrtF2m m aa in mulF2m m a a == modF2m m aa
          testProperty "sqrt(a) * sqrt(a) = a in GF(2^16)" $
            let m = 65581 :: Integer -- x^16 + x^5 + x^3 + x^2 + 1
                nums = [0 .. 65535 :: Integer]
             in nums == [let y = sqrtF2m m x in squareF2m m y | x <- nums]
        ]

powTests =
    testGroup
        "powF2m"
        [ testProperty "2 is square" $
            \(Positive m) (NonNegative a) -> powF2m m a 2 == squareF2m m a
        , testProperty "1 is identity" $
            \(Positive m) (NonNegative a) -> powF2m m a 1 == modF2m m a
        , testProperty "0 is annihilator" $
            \(Positive m) (NonNegative a) -> powF2m m a 0 == modF2m m 1
        , testProperty "(a * b) ^ c == (a ^ c) * (b ^ c)" $
            \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c) ->
                powF2m m (mulF2m m a b) c == mulF2m m (powF2m m a c) (powF2m m b c)
        , testProperty "a ^ (b + c) == (a ^ b) * (a ^ c)" $
            \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c) ->
                powF2m m a (b + c) == mulF2m m (powF2m m a b) (powF2m m a c)
        , testProperty "a ^ (b * c) == (a ^ b) ^ c" $
            \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c) ->
                powF2m m a (b * c) == powF2m m (powF2m m a b) c
        ]

invTests =
    testGroup
        "invF2m"
        [ testProperty "1 / a * a == 1" $
            \(Positive m) (NonNegative a) ->
                maybe True (\c -> mulF2m m c a == modF2m m 1) (invF2m m a)
        , testProperty "1 / a == a (mod a^2-1)" $
            \(NonNegative a) -> a < 2 || invF2m (squareF2m' a `addF2m` 1) a == Just a
        ]

divTests =
    testGroup
        "divF2m"
        [ testProperty "1 / a == inv a" $
            \(Positive m) (NonNegative a) -> divF2m m 1 a == invF2m m a
        , testProperty "a / b == a * inv b" $
            \(Positive m) (NonNegative a) (NonNegative b) ->
                divF2m m a b == (mulF2m m a <$> invF2m m b)
        , testProperty "a * b / b == a" $
            \(Positive m) (NonNegative a) (NonNegative b) ->
                isNothing (invF2m m b) || divF2m m (mulF2m m a b) b == Just (modF2m m a)
        ]

tests =
    testGroup
        "number.F2m"
        [ addTests
        , modTests
        , mulTests
        , squareTests
        , powTests
        , invTests
        , divTests
        ]