1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* Copyright (c) 2012-2013 Vincent Hanquez <vincent@snarc.org>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of his contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef WITH_AESNI
#include <wmmintrin.h>
#include <tmmintrin.h>
#include <string.h>
#include <cryptonite_aes.h>
#include <cryptonite_cpu.h>
#include <aes/x86ni.h>
#include <aes/block128.h>
#ifdef ARCH_X86
#define ALIGN_UP(addr, size) (((addr) + ((size) - 1)) & (~((size) - 1)))
#define ALIGNMENT(n) __attribute__((aligned(n)))
/* old GCC version doesn't cope with the shuffle parameters, that can take 2 values (0xff and 0xaa)
* in our case, passed as argument despite being a immediate 8 bits constant anyway.
* un-factorise aes_128_key_expansion into 2 version that have the shuffle parameter explicitly set */
static __m128i aes_128_key_expansion_ff(__m128i key, __m128i keygened)
{
keygened = _mm_shuffle_epi32(keygened, 0xff);
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
return _mm_xor_si128(key, keygened);
}
static __m128i aes_128_key_expansion_aa(__m128i key, __m128i keygened)
{
keygened = _mm_shuffle_epi32(keygened, 0xaa);
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
return _mm_xor_si128(key, keygened);
}
void cryptonite_aesni_init(aes_key *key, uint8_t *ikey, uint8_t size)
{
__m128i k[28];
uint64_t *out = (uint64_t *) key->data;
int i;
switch (size) {
case 16:
k[0] = _mm_loadu_si128((const __m128i*) ikey);
#define AES_128_key_exp(K, RCON) aes_128_key_expansion_ff(K, _mm_aeskeygenassist_si128(K, RCON))
k[1] = AES_128_key_exp(k[0], 0x01);
k[2] = AES_128_key_exp(k[1], 0x02);
k[3] = AES_128_key_exp(k[2], 0x04);
k[4] = AES_128_key_exp(k[3], 0x08);
k[5] = AES_128_key_exp(k[4], 0x10);
k[6] = AES_128_key_exp(k[5], 0x20);
k[7] = AES_128_key_exp(k[6], 0x40);
k[8] = AES_128_key_exp(k[7], 0x80);
k[9] = AES_128_key_exp(k[8], 0x1B);
k[10] = AES_128_key_exp(k[9], 0x36);
/* generate decryption keys in reverse order.
* k[10] is shared by last encryption and first decryption rounds
* k[20] is shared by first encryption round (and is the original user key) */
k[11] = _mm_aesimc_si128(k[9]);
k[12] = _mm_aesimc_si128(k[8]);
k[13] = _mm_aesimc_si128(k[7]);
k[14] = _mm_aesimc_si128(k[6]);
k[15] = _mm_aesimc_si128(k[5]);
k[16] = _mm_aesimc_si128(k[4]);
k[17] = _mm_aesimc_si128(k[3]);
k[18] = _mm_aesimc_si128(k[2]);
k[19] = _mm_aesimc_si128(k[1]);
for (i = 0; i < 20; i++)
_mm_storeu_si128(((__m128i *) out) + i, k[i]);
break;
case 32:
#define AES_256_key_exp_1(K1, K2, RCON) aes_128_key_expansion_ff(K1, _mm_aeskeygenassist_si128(K2, RCON))
#define AES_256_key_exp_2(K1, K2) aes_128_key_expansion_aa(K1, _mm_aeskeygenassist_si128(K2, 0x00))
k[0] = _mm_loadu_si128((const __m128i*) ikey);
k[1] = _mm_loadu_si128((const __m128i*) (ikey+16));
k[2] = AES_256_key_exp_1(k[0], k[1], 0x01);
k[3] = AES_256_key_exp_2(k[1], k[2]);
k[4] = AES_256_key_exp_1(k[2], k[3], 0x02);
k[5] = AES_256_key_exp_2(k[3], k[4]);
k[6] = AES_256_key_exp_1(k[4], k[5], 0x04);
k[7] = AES_256_key_exp_2(k[5], k[6]);
k[8] = AES_256_key_exp_1(k[6], k[7], 0x08);
k[9] = AES_256_key_exp_2(k[7], k[8]);
k[10] = AES_256_key_exp_1(k[8], k[9], 0x10);
k[11] = AES_256_key_exp_2(k[9], k[10]);
k[12] = AES_256_key_exp_1(k[10], k[11], 0x20);
k[13] = AES_256_key_exp_2(k[11], k[12]);
k[14] = AES_256_key_exp_1(k[12], k[13], 0x40);
k[15] = _mm_aesimc_si128(k[13]);
k[16] = _mm_aesimc_si128(k[12]);
k[17] = _mm_aesimc_si128(k[11]);
k[18] = _mm_aesimc_si128(k[10]);
k[19] = _mm_aesimc_si128(k[9]);
k[20] = _mm_aesimc_si128(k[8]);
k[21] = _mm_aesimc_si128(k[7]);
k[22] = _mm_aesimc_si128(k[6]);
k[23] = _mm_aesimc_si128(k[5]);
k[24] = _mm_aesimc_si128(k[4]);
k[25] = _mm_aesimc_si128(k[3]);
k[26] = _mm_aesimc_si128(k[2]);
k[27] = _mm_aesimc_si128(k[1]);
for (i = 0; i < 28; i++)
_mm_storeu_si128(((__m128i *) out) + i, k[i]);
break;
default:
break;
}
}
/* TO OPTIMISE: use pcmulqdq... or some faster code.
* this is the lamest way of doing it, but i'm out of time.
* this is basically a copy of gf_mulx in gf.c */
static __m128i gfmulx(__m128i v)
{
uint64_t v_[2] ALIGNMENT(16);
const uint64_t gf_mask = 0x8000000000000000;
_mm_store_si128((__m128i *) v_, v);
uint64_t r = ((v_[1] & gf_mask) ? 0x87 : 0);
v_[1] = (v_[1] << 1) | (v_[0] & gf_mask ? 1 : 0);
v_[0] = (v_[0] << 1) ^ r;
v = _mm_load_si128((__m128i *) v_);
return v;
}
static void unopt_gf_mul(block128 *a, block128 *b)
{
uint64_t a0, a1, v0, v1;
int i, j;
a0 = a1 = 0;
v0 = cpu_to_be64(a->q[0]);
v1 = cpu_to_be64(a->q[1]);
for (i = 0; i < 16; i++)
for (j = 0x80; j != 0; j >>= 1) {
uint8_t x = b->b[i] & j;
a0 ^= x ? v0 : 0;
a1 ^= x ? v1 : 0;
x = (uint8_t) v1 & 1;
v1 = (v1 >> 1) | (v0 << 63);
v0 = (v0 >> 1) ^ (x ? (0xe1ULL << 56) : 0);
}
a->q[0] = cpu_to_be64(a0);
a->q[1] = cpu_to_be64(a1);
}
static __m128i ghash_add(__m128i tag, __m128i h, __m128i m)
{
aes_block _t, _h;
tag = _mm_xor_si128(tag, m);
_mm_store_si128((__m128i *) &_t, tag);
_mm_store_si128((__m128i *) &_h, h);
unopt_gf_mul(&_t, &_h);
tag = _mm_load_si128((__m128i *) &_t);
return tag;
}
#define PRELOAD_ENC_KEYS128(k) \
__m128i K0 = _mm_loadu_si128(((__m128i *) k)+0); \
__m128i K1 = _mm_loadu_si128(((__m128i *) k)+1); \
__m128i K2 = _mm_loadu_si128(((__m128i *) k)+2); \
__m128i K3 = _mm_loadu_si128(((__m128i *) k)+3); \
__m128i K4 = _mm_loadu_si128(((__m128i *) k)+4); \
__m128i K5 = _mm_loadu_si128(((__m128i *) k)+5); \
__m128i K6 = _mm_loadu_si128(((__m128i *) k)+6); \
__m128i K7 = _mm_loadu_si128(((__m128i *) k)+7); \
__m128i K8 = _mm_loadu_si128(((__m128i *) k)+8); \
__m128i K9 = _mm_loadu_si128(((__m128i *) k)+9); \
__m128i K10 = _mm_loadu_si128(((__m128i *) k)+10);
#define PRELOAD_ENC_KEYS256(k) \
PRELOAD_ENC_KEYS128(k) \
__m128i K11 = _mm_loadu_si128(((__m128i *) k)+11); \
__m128i K12 = _mm_loadu_si128(((__m128i *) k)+12); \
__m128i K13 = _mm_loadu_si128(((__m128i *) k)+13); \
__m128i K14 = _mm_loadu_si128(((__m128i *) k)+14);
#define DO_ENC_BLOCK128(m) \
m = _mm_xor_si128(m, K0); \
m = _mm_aesenc_si128(m, K1); \
m = _mm_aesenc_si128(m, K2); \
m = _mm_aesenc_si128(m, K3); \
m = _mm_aesenc_si128(m, K4); \
m = _mm_aesenc_si128(m, K5); \
m = _mm_aesenc_si128(m, K6); \
m = _mm_aesenc_si128(m, K7); \
m = _mm_aesenc_si128(m, K8); \
m = _mm_aesenc_si128(m, K9); \
m = _mm_aesenclast_si128(m, K10);
#define DO_ENC_BLOCK256(m) \
m = _mm_xor_si128(m, K0); \
m = _mm_aesenc_si128(m, K1); \
m = _mm_aesenc_si128(m, K2); \
m = _mm_aesenc_si128(m, K3); \
m = _mm_aesenc_si128(m, K4); \
m = _mm_aesenc_si128(m, K5); \
m = _mm_aesenc_si128(m, K6); \
m = _mm_aesenc_si128(m, K7); \
m = _mm_aesenc_si128(m, K8); \
m = _mm_aesenc_si128(m, K9); \
m = _mm_aesenc_si128(m, K10); \
m = _mm_aesenc_si128(m, K11); \
m = _mm_aesenc_si128(m, K12); \
m = _mm_aesenc_si128(m, K13); \
m = _mm_aesenclast_si128(m, K14);
/* load K0 at K9 from index 'at' */
#define PRELOAD_DEC_KEYS_AT(k, at) \
__m128i K0 = _mm_loadu_si128(((__m128i *) k)+at+0); \
__m128i K1 = _mm_loadu_si128(((__m128i *) k)+at+1); \
__m128i K2 = _mm_loadu_si128(((__m128i *) k)+at+2); \
__m128i K3 = _mm_loadu_si128(((__m128i *) k)+at+3); \
__m128i K4 = _mm_loadu_si128(((__m128i *) k)+at+4); \
__m128i K5 = _mm_loadu_si128(((__m128i *) k)+at+5); \
__m128i K6 = _mm_loadu_si128(((__m128i *) k)+at+6); \
__m128i K7 = _mm_loadu_si128(((__m128i *) k)+at+7); \
__m128i K8 = _mm_loadu_si128(((__m128i *) k)+at+8); \
__m128i K9 = _mm_loadu_si128(((__m128i *) k)+at+9); \
#define PRELOAD_DEC_KEYS128(k) \
PRELOAD_DEC_KEYS_AT(k, 10) \
__m128i K10 = _mm_loadu_si128(((__m128i *) k)+0);
#define PRELOAD_DEC_KEYS256(k) \
PRELOAD_DEC_KEYS_AT(k, 14) \
__m128i K10 = _mm_loadu_si128(((__m128i *) k)+14+10); \
__m128i K11 = _mm_loadu_si128(((__m128i *) k)+14+11); \
__m128i K12 = _mm_loadu_si128(((__m128i *) k)+14+12); \
__m128i K13 = _mm_loadu_si128(((__m128i *) k)+14+13); \
__m128i K14 = _mm_loadu_si128(((__m128i *) k)+0);
#define DO_DEC_BLOCK128(m) \
m = _mm_xor_si128(m, K0); \
m = _mm_aesdec_si128(m, K1); \
m = _mm_aesdec_si128(m, K2); \
m = _mm_aesdec_si128(m, K3); \
m = _mm_aesdec_si128(m, K4); \
m = _mm_aesdec_si128(m, K5); \
m = _mm_aesdec_si128(m, K6); \
m = _mm_aesdec_si128(m, K7); \
m = _mm_aesdec_si128(m, K8); \
m = _mm_aesdec_si128(m, K9); \
m = _mm_aesdeclast_si128(m, K10);
#define DO_DEC_BLOCK256(m) \
m = _mm_xor_si128(m, K0); \
m = _mm_aesdec_si128(m, K1); \
m = _mm_aesdec_si128(m, K2); \
m = _mm_aesdec_si128(m, K3); \
m = _mm_aesdec_si128(m, K4); \
m = _mm_aesdec_si128(m, K5); \
m = _mm_aesdec_si128(m, K6); \
m = _mm_aesdec_si128(m, K7); \
m = _mm_aesdec_si128(m, K8); \
m = _mm_aesdec_si128(m, K9); \
m = _mm_aesdec_si128(m, K10); \
m = _mm_aesdec_si128(m, K11); \
m = _mm_aesdec_si128(m, K12); \
m = _mm_aesdec_si128(m, K13); \
m = _mm_aesdeclast_si128(m, K14);
#define SIZE 128
#define SIZED(m) m##128
#define PRELOAD_ENC PRELOAD_ENC_KEYS128
#define DO_ENC_BLOCK DO_ENC_BLOCK128
#define PRELOAD_DEC PRELOAD_DEC_KEYS128
#define DO_DEC_BLOCK DO_DEC_BLOCK128
#include <aes/x86ni_impl.c>
#undef SIZE
#undef SIZED
#undef PRELOAD_ENC
#undef PRELOAD_DEC
#undef DO_ENC_BLOCK
#undef DO_DEC_BLOCK
#define SIZED(m) m##256
#define SIZE 256
#define PRELOAD_ENC PRELOAD_ENC_KEYS256
#define DO_ENC_BLOCK DO_ENC_BLOCK256
#define PRELOAD_DEC PRELOAD_DEC_KEYS256
#define DO_DEC_BLOCK DO_DEC_BLOCK256
#include <aes/x86ni_impl.c>
#undef SIZE
#undef SIZED
#undef PRELOAD_ENC
#undef PRELOAD_DEC
#undef DO_ENC_BLOCK
#undef DO_DEC_BLOCK
#endif
#endif
|