File: x86ni.c

package info (click to toggle)
haskell-cryptonite 0.20-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 2,936 kB
  • ctags: 1,963
  • sloc: ansic: 31,728; haskell: 10,183; makefile: 3
file content (331 lines) | stat: -rw-r--r-- 11,259 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 * Copyright (c) 2012-2013 Vincent Hanquez <vincent@snarc.org>
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of his contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifdef WITH_AESNI

#include <wmmintrin.h>
#include <tmmintrin.h>
#include <string.h>
#include <cryptonite_aes.h>
#include <cryptonite_cpu.h>
#include <aes/x86ni.h>
#include <aes/block128.h>

#ifdef ARCH_X86
#define ALIGN_UP(addr, size) (((addr) + ((size) - 1)) & (~((size) - 1)))
#define ALIGNMENT(n) __attribute__((aligned(n)))

/* old GCC version doesn't cope with the shuffle parameters, that can take 2 values (0xff and 0xaa)
 * in our case, passed as argument despite being a immediate 8 bits constant anyway.
 * un-factorise aes_128_key_expansion into 2 version that have the shuffle parameter explicitly set */
static __m128i aes_128_key_expansion_ff(__m128i key, __m128i keygened)
{
	keygened = _mm_shuffle_epi32(keygened, 0xff);
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	return _mm_xor_si128(key, keygened);
}

static __m128i aes_128_key_expansion_aa(__m128i key, __m128i keygened)
{
	keygened = _mm_shuffle_epi32(keygened, 0xaa);
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	key = _mm_xor_si128(key, _mm_slli_si128(key, 4));
	return _mm_xor_si128(key, keygened);
}

void cryptonite_aesni_init(aes_key *key, uint8_t *ikey, uint8_t size)
{
	__m128i k[28];
	uint64_t *out = (uint64_t *) key->data;
	int i;

	switch (size) {
	case 16:
		k[0] = _mm_loadu_si128((const __m128i*) ikey);

		#define AES_128_key_exp(K, RCON) aes_128_key_expansion_ff(K, _mm_aeskeygenassist_si128(K, RCON))
		k[1]  = AES_128_key_exp(k[0], 0x01);
		k[2]  = AES_128_key_exp(k[1], 0x02);
		k[3]  = AES_128_key_exp(k[2], 0x04);
		k[4]  = AES_128_key_exp(k[3], 0x08);
		k[5]  = AES_128_key_exp(k[4], 0x10);
		k[6]  = AES_128_key_exp(k[5], 0x20);
		k[7]  = AES_128_key_exp(k[6], 0x40);
		k[8]  = AES_128_key_exp(k[7], 0x80);
		k[9]  = AES_128_key_exp(k[8], 0x1B);
		k[10] = AES_128_key_exp(k[9], 0x36);

		/* generate decryption keys in reverse order.
		 * k[10] is shared by last encryption and first decryption rounds
		 * k[20] is shared by first encryption round (and is the original user key) */
		k[11] = _mm_aesimc_si128(k[9]);
		k[12] = _mm_aesimc_si128(k[8]);
		k[13] = _mm_aesimc_si128(k[7]);
		k[14] = _mm_aesimc_si128(k[6]);
		k[15] = _mm_aesimc_si128(k[5]);
		k[16] = _mm_aesimc_si128(k[4]);
		k[17] = _mm_aesimc_si128(k[3]);
		k[18] = _mm_aesimc_si128(k[2]);
		k[19] = _mm_aesimc_si128(k[1]);

		for (i = 0; i < 20; i++)
			_mm_storeu_si128(((__m128i *) out) + i, k[i]);
		break;
	case 32:
#define AES_256_key_exp_1(K1, K2, RCON) aes_128_key_expansion_ff(K1, _mm_aeskeygenassist_si128(K2, RCON))
#define AES_256_key_exp_2(K1, K2)       aes_128_key_expansion_aa(K1, _mm_aeskeygenassist_si128(K2, 0x00))
		k[0]  = _mm_loadu_si128((const __m128i*) ikey);
		k[1]  = _mm_loadu_si128((const __m128i*) (ikey+16));
		k[2]  = AES_256_key_exp_1(k[0], k[1], 0x01);
		k[3]  = AES_256_key_exp_2(k[1], k[2]);
		k[4]  = AES_256_key_exp_1(k[2], k[3], 0x02);
		k[5]  = AES_256_key_exp_2(k[3], k[4]);
		k[6]  = AES_256_key_exp_1(k[4], k[5], 0x04);
		k[7]  = AES_256_key_exp_2(k[5], k[6]);
		k[8]  = AES_256_key_exp_1(k[6], k[7], 0x08);
		k[9]  = AES_256_key_exp_2(k[7], k[8]);
		k[10] = AES_256_key_exp_1(k[8], k[9], 0x10);
		k[11] = AES_256_key_exp_2(k[9], k[10]);
		k[12] = AES_256_key_exp_1(k[10], k[11], 0x20);
		k[13] = AES_256_key_exp_2(k[11], k[12]);
		k[14] = AES_256_key_exp_1(k[12], k[13], 0x40);

		k[15] = _mm_aesimc_si128(k[13]);
		k[16] = _mm_aesimc_si128(k[12]);
		k[17] = _mm_aesimc_si128(k[11]);
		k[18] = _mm_aesimc_si128(k[10]);
		k[19] = _mm_aesimc_si128(k[9]);
		k[20] = _mm_aesimc_si128(k[8]);
		k[21] = _mm_aesimc_si128(k[7]);
		k[22] = _mm_aesimc_si128(k[6]);
		k[23] = _mm_aesimc_si128(k[5]);
		k[24] = _mm_aesimc_si128(k[4]);
		k[25] = _mm_aesimc_si128(k[3]);
		k[26] = _mm_aesimc_si128(k[2]);
		k[27] = _mm_aesimc_si128(k[1]);
		for (i = 0; i < 28; i++)
			_mm_storeu_si128(((__m128i *) out) + i, k[i]);
		break;
	default:
		break;
	}
}

/* TO OPTIMISE: use pcmulqdq... or some faster code.
 * this is the lamest way of doing it, but i'm out of time.
 * this is basically a copy of gf_mulx in gf.c */
static __m128i gfmulx(__m128i v)
{
	uint64_t v_[2] ALIGNMENT(16);
	const uint64_t gf_mask = 0x8000000000000000;

	_mm_store_si128((__m128i *) v_, v);
	uint64_t r = ((v_[1] & gf_mask) ? 0x87 : 0);
	v_[1] = (v_[1] << 1) | (v_[0] & gf_mask ? 1 : 0);
	v_[0] = (v_[0] << 1) ^ r;
	v = _mm_load_si128((__m128i *) v_);
	return v;
}

static void unopt_gf_mul(block128 *a, block128 *b)
{
	uint64_t a0, a1, v0, v1;
	int i, j;

	a0 = a1 = 0;
	v0 = cpu_to_be64(a->q[0]);
	v1 = cpu_to_be64(a->q[1]);

	for (i = 0; i < 16; i++)
		for (j = 0x80; j != 0; j >>= 1) {
			uint8_t x = b->b[i] & j;
			a0 ^= x ? v0 : 0;
			a1 ^= x ? v1 : 0;
			x = (uint8_t) v1 & 1;
			v1 = (v1 >> 1) | (v0 << 63);
			v0 = (v0 >> 1) ^ (x ? (0xe1ULL << 56) : 0);
		}
	a->q[0] = cpu_to_be64(a0);
	a->q[1] = cpu_to_be64(a1);
}

static __m128i ghash_add(__m128i tag, __m128i h, __m128i m)
{
	aes_block _t, _h;
	tag = _mm_xor_si128(tag, m);

	_mm_store_si128((__m128i *) &_t, tag);
	_mm_store_si128((__m128i *) &_h, h);
	unopt_gf_mul(&_t, &_h);
	tag = _mm_load_si128((__m128i *) &_t);
	return tag;
}

#define PRELOAD_ENC_KEYS128(k) \
	__m128i K0  = _mm_loadu_si128(((__m128i *) k)+0); \
	__m128i K1  = _mm_loadu_si128(((__m128i *) k)+1); \
	__m128i K2  = _mm_loadu_si128(((__m128i *) k)+2); \
	__m128i K3  = _mm_loadu_si128(((__m128i *) k)+3); \
	__m128i K4  = _mm_loadu_si128(((__m128i *) k)+4); \
	__m128i K5  = _mm_loadu_si128(((__m128i *) k)+5); \
	__m128i K6  = _mm_loadu_si128(((__m128i *) k)+6); \
	__m128i K7  = _mm_loadu_si128(((__m128i *) k)+7); \
	__m128i K8  = _mm_loadu_si128(((__m128i *) k)+8); \
	__m128i K9  = _mm_loadu_si128(((__m128i *) k)+9); \
	__m128i K10 = _mm_loadu_si128(((__m128i *) k)+10);

#define PRELOAD_ENC_KEYS256(k) \
	PRELOAD_ENC_KEYS128(k) \
	__m128i K11 = _mm_loadu_si128(((__m128i *) k)+11); \
	__m128i K12 = _mm_loadu_si128(((__m128i *) k)+12); \
	__m128i K13 = _mm_loadu_si128(((__m128i *) k)+13); \
	__m128i K14 = _mm_loadu_si128(((__m128i *) k)+14);

#define DO_ENC_BLOCK128(m) \
	m = _mm_xor_si128(m, K0); \
	m = _mm_aesenc_si128(m, K1); \
	m = _mm_aesenc_si128(m, K2); \
	m = _mm_aesenc_si128(m, K3); \
	m = _mm_aesenc_si128(m, K4); \
	m = _mm_aesenc_si128(m, K5); \
	m = _mm_aesenc_si128(m, K6); \
	m = _mm_aesenc_si128(m, K7); \
	m = _mm_aesenc_si128(m, K8); \
	m = _mm_aesenc_si128(m, K9); \
	m = _mm_aesenclast_si128(m, K10);

#define DO_ENC_BLOCK256(m) \
	m = _mm_xor_si128(m, K0); \
	m = _mm_aesenc_si128(m, K1); \
	m = _mm_aesenc_si128(m, K2); \
	m = _mm_aesenc_si128(m, K3); \
	m = _mm_aesenc_si128(m, K4); \
	m = _mm_aesenc_si128(m, K5); \
	m = _mm_aesenc_si128(m, K6); \
	m = _mm_aesenc_si128(m, K7); \
	m = _mm_aesenc_si128(m, K8); \
	m = _mm_aesenc_si128(m, K9); \
	m = _mm_aesenc_si128(m, K10); \
	m = _mm_aesenc_si128(m, K11); \
	m = _mm_aesenc_si128(m, K12); \
	m = _mm_aesenc_si128(m, K13); \
	m = _mm_aesenclast_si128(m, K14);

/* load K0 at K9 from index 'at' */
#define PRELOAD_DEC_KEYS_AT(k, at) \
	__m128i K0  = _mm_loadu_si128(((__m128i *) k)+at+0); \
	__m128i K1  = _mm_loadu_si128(((__m128i *) k)+at+1); \
	__m128i K2  = _mm_loadu_si128(((__m128i *) k)+at+2); \
	__m128i K3  = _mm_loadu_si128(((__m128i *) k)+at+3); \
	__m128i K4  = _mm_loadu_si128(((__m128i *) k)+at+4); \
	__m128i K5  = _mm_loadu_si128(((__m128i *) k)+at+5); \
	__m128i K6  = _mm_loadu_si128(((__m128i *) k)+at+6); \
	__m128i K7  = _mm_loadu_si128(((__m128i *) k)+at+7); \
	__m128i K8  = _mm_loadu_si128(((__m128i *) k)+at+8); \
	__m128i K9  = _mm_loadu_si128(((__m128i *) k)+at+9); \

#define PRELOAD_DEC_KEYS128(k) \
	PRELOAD_DEC_KEYS_AT(k, 10) \
	__m128i K10 = _mm_loadu_si128(((__m128i *) k)+0);

#define PRELOAD_DEC_KEYS256(k) \
	PRELOAD_DEC_KEYS_AT(k, 14) \
	__m128i K10 = _mm_loadu_si128(((__m128i *) k)+14+10); \
	__m128i K11 = _mm_loadu_si128(((__m128i *) k)+14+11); \
	__m128i K12 = _mm_loadu_si128(((__m128i *) k)+14+12); \
	__m128i K13 = _mm_loadu_si128(((__m128i *) k)+14+13); \
	__m128i K14 = _mm_loadu_si128(((__m128i *) k)+0);

#define DO_DEC_BLOCK128(m) \
	m = _mm_xor_si128(m, K0); \
	m = _mm_aesdec_si128(m, K1); \
	m = _mm_aesdec_si128(m, K2); \
	m = _mm_aesdec_si128(m, K3); \
	m = _mm_aesdec_si128(m, K4); \
	m = _mm_aesdec_si128(m, K5); \
	m = _mm_aesdec_si128(m, K6); \
	m = _mm_aesdec_si128(m, K7); \
	m = _mm_aesdec_si128(m, K8); \
	m = _mm_aesdec_si128(m, K9); \
	m = _mm_aesdeclast_si128(m, K10);

#define DO_DEC_BLOCK256(m) \
	m = _mm_xor_si128(m, K0); \
	m = _mm_aesdec_si128(m, K1); \
	m = _mm_aesdec_si128(m, K2); \
	m = _mm_aesdec_si128(m, K3); \
	m = _mm_aesdec_si128(m, K4); \
	m = _mm_aesdec_si128(m, K5); \
	m = _mm_aesdec_si128(m, K6); \
	m = _mm_aesdec_si128(m, K7); \
	m = _mm_aesdec_si128(m, K8); \
	m = _mm_aesdec_si128(m, K9); \
	m = _mm_aesdec_si128(m, K10); \
	m = _mm_aesdec_si128(m, K11); \
	m = _mm_aesdec_si128(m, K12); \
	m = _mm_aesdec_si128(m, K13); \
	m = _mm_aesdeclast_si128(m, K14);

#define SIZE 128
#define SIZED(m) m##128
#define PRELOAD_ENC PRELOAD_ENC_KEYS128
#define DO_ENC_BLOCK DO_ENC_BLOCK128
#define PRELOAD_DEC PRELOAD_DEC_KEYS128
#define DO_DEC_BLOCK DO_DEC_BLOCK128
#include <aes/x86ni_impl.c>

#undef SIZE
#undef SIZED
#undef PRELOAD_ENC
#undef PRELOAD_DEC
#undef DO_ENC_BLOCK
#undef DO_DEC_BLOCK

#define SIZED(m) m##256
#define SIZE 256
#define PRELOAD_ENC PRELOAD_ENC_KEYS256
#define DO_ENC_BLOCK DO_ENC_BLOCK256
#define PRELOAD_DEC PRELOAD_DEC_KEYS256
#define DO_DEC_BLOCK DO_DEC_BLOCK256
#include <aes/x86ni_impl.c>

#undef SIZE
#undef SIZED
#undef PRELOAD_ENC
#undef PRELOAD_DEC
#undef DO_ENC_BLOCK
#undef DO_DEC_BLOCK

#endif

#endif