1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
Ed25519 batch verification
*/
#define max_batch_size 64
#define heap_batch_size ((max_batch_size * 2) + 1)
/* which limb is the 128th bit in? */
static const size_t limb128bits = (128 + bignum256modm_bits_per_limb - 1) / bignum256modm_bits_per_limb;
typedef size_t heap_index_t;
typedef struct batch_heap_t {
unsigned char r[heap_batch_size][16]; /* 128 bit random values */
ge25519 points[heap_batch_size];
bignum256modm scalars[heap_batch_size];
heap_index_t heap[heap_batch_size];
size_t size;
} batch_heap;
/* swap two values in the heap */
static void
heap_swap(heap_index_t *heap, size_t a, size_t b) {
heap_index_t temp;
temp = heap[a];
heap[a] = heap[b];
heap[b] = temp;
}
/* add the scalar at the end of the list to the heap */
static void
heap_insert_next(batch_heap *heap) {
size_t node = heap->size, parent;
heap_index_t *pheap = heap->heap;
bignum256modm *scalars = heap->scalars;
/* insert at the bottom */
pheap[node] = (heap_index_t)node;
/* sift node up to its sorted spot */
parent = (node - 1) / 2;
while (node && lt256_modm_batch(scalars[pheap[parent]], scalars[pheap[node]], bignum256modm_limb_size - 1)) {
heap_swap(pheap, parent, node);
node = parent;
parent = (node - 1) / 2;
}
heap->size++;
}
/* update the heap when the root element is updated */
static void
heap_updated_root(batch_heap *heap, size_t limbsize) {
size_t node, parent, childr, childl;
heap_index_t *pheap = heap->heap;
bignum256modm *scalars = heap->scalars;
/* sift root to the bottom */
parent = 0;
node = 1;
childl = 1;
childr = 2;
while ((childr < heap->size)) {
node = lt256_modm_batch(scalars[pheap[childl]], scalars[pheap[childr]], limbsize) ? childr : childl;
heap_swap(pheap, parent, node);
parent = node;
childl = (parent * 2) + 1;
childr = childl + 1;
}
/* sift root back up to its sorted spot */
parent = (node - 1) / 2;
while (node && lte256_modm_batch(scalars[pheap[parent]], scalars[pheap[node]], limbsize)) {
heap_swap(pheap, parent, node);
node = parent;
parent = (node - 1) / 2;
}
}
/* build the heap with count elements, count must be >= 3 */
static void
heap_build(batch_heap *heap, size_t count) {
heap->heap[0] = 0;
heap->size = 0;
while (heap->size < count)
heap_insert_next(heap);
}
/* extend the heap to contain new_count elements */
static void
heap_extend(batch_heap *heap, size_t new_count) {
while (heap->size < new_count)
heap_insert_next(heap);
}
/* get the top 2 elements of the heap */
static void
heap_get_top2(batch_heap *heap, heap_index_t *max1, heap_index_t *max2, size_t limbsize) {
heap_index_t h0 = heap->heap[0], h1 = heap->heap[1], h2 = heap->heap[2];
if (lt256_modm_batch(heap->scalars[h1], heap->scalars[h2], limbsize))
h1 = h2;
*max1 = h0;
*max2 = h1;
}
/* */
static void
ge25519_multi_scalarmult_vartime_final(ge25519 *r, ge25519 *point, bignum256modm scalar) {
const bignum256modm_element_t topbit = ((bignum256modm_element_t)1 << (bignum256modm_bits_per_limb - 1));
size_t limb = limb128bits;
bignum256modm_element_t flag;
if (isone256_modm_batch(scalar)) {
/* this will happen most of the time after bos-carter */
*r = *point;
return;
} else if (iszero256_modm_batch(scalar)) {
/* this will only happen if all scalars == 0 */
memset(r, 0, sizeof(*r));
r->y[0] = 1;
r->z[0] = 1;
return;
}
*r = *point;
/* find the limb where first bit is set */
while (!scalar[limb])
limb--;
/* find the first bit */
flag = topbit;
while ((scalar[limb] & flag) == 0)
flag >>= 1;
/* exponentiate */
for (;;) {
ge25519_double(r, r);
if (scalar[limb] & flag)
ge25519_add(r, r, point);
flag >>= 1;
if (!flag) {
if (!limb--)
break;
flag = topbit;
}
}
}
/* count must be >= 5 */
static void
ge25519_multi_scalarmult_vartime(ge25519 *r, batch_heap *heap, size_t count) {
heap_index_t max1, max2;
/* start with the full limb size */
size_t limbsize = bignum256modm_limb_size - 1;
/* whether the heap has been extended to include the 128 bit scalars */
int extended = 0;
/* grab an odd number of scalars to build the heap, unknown limb sizes */
heap_build(heap, ((count + 1) / 2) | 1);
for (;;) {
heap_get_top2(heap, &max1, &max2, limbsize);
/* only one scalar remaining, we're done */
if (iszero256_modm_batch(heap->scalars[max2]))
break;
/* exhausted another limb? */
if (!heap->scalars[max1][limbsize])
limbsize -= 1;
/* can we extend to the 128 bit scalars? */
if (!extended && isatmost128bits256_modm_batch(heap->scalars[max1])) {
heap_extend(heap, count);
heap_get_top2(heap, &max1, &max2, limbsize);
extended = 1;
}
sub256_modm_batch(heap->scalars[max1], heap->scalars[max1], heap->scalars[max2], limbsize);
ge25519_add(&heap->points[max2], &heap->points[max2], &heap->points[max1]);
heap_updated_root(heap, limbsize);
}
ge25519_multi_scalarmult_vartime_final(r, &heap->points[max1], heap->scalars[max1]);
}
/* not actually used for anything other than testing */
unsigned char batch_point_buffer[3][32];
static int
ge25519_is_neutral_vartime(const ge25519 *p) {
static const unsigned char zero[32] = {0};
unsigned char point_buffer[3][32];
curve25519_contract(point_buffer[0], p->x);
curve25519_contract(point_buffer[1], p->y);
curve25519_contract(point_buffer[2], p->z);
memcpy(batch_point_buffer[1], point_buffer[1], 32);
return (memcmp(point_buffer[0], zero, 32) == 0) && (memcmp(point_buffer[1], point_buffer[2], 32) == 0);
}
int
ED25519_FN(ed25519_sign_open_batch) (const unsigned char **m, size_t *mlen, const unsigned char **pk, const unsigned char **RS, size_t num, int *valid) {
batch_heap ALIGN(16) batch;
ge25519 ALIGN(16) p;
bignum256modm *r_scalars;
size_t i, batchsize;
unsigned char hram[64];
int ret = 0;
for (i = 0; i < num; i++)
valid[i] = 1;
while (num > 3) {
batchsize = (num > max_batch_size) ? max_batch_size : num;
/* generate r (scalars[batchsize+1]..scalars[2*batchsize] */
ED25519_FN(ed25519_randombytes_unsafe) (batch.r, batchsize * 16);
r_scalars = &batch.scalars[batchsize + 1];
for (i = 0; i < batchsize; i++)
expand256_modm(r_scalars[i], batch.r[i], 16);
/* compute scalars[0] = ((r1s1 + r2s2 + ...)) */
for (i = 0; i < batchsize; i++) {
expand256_modm(batch.scalars[i], RS[i] + 32, 32);
mul256_modm(batch.scalars[i], batch.scalars[i], r_scalars[i]);
}
for (i = 1; i < batchsize; i++)
add256_modm(batch.scalars[0], batch.scalars[0], batch.scalars[i]);
/* compute scalars[1]..scalars[batchsize] as r[i]*H(R[i],A[i],m[i]) */
for (i = 0; i < batchsize; i++) {
ed25519_hram(hram, RS[i], pk[i], m[i], mlen[i]);
expand256_modm(batch.scalars[i+1], hram, 64);
mul256_modm(batch.scalars[i+1], batch.scalars[i+1], r_scalars[i]);
}
/* compute points */
batch.points[0] = ge25519_basepoint;
for (i = 0; i < batchsize; i++)
if (!ge25519_unpack_negative_vartime(&batch.points[i+1], pk[i]))
goto fallback;
for (i = 0; i < batchsize; i++)
if (!ge25519_unpack_negative_vartime(&batch.points[batchsize+i+1], RS[i]))
goto fallback;
ge25519_multi_scalarmult_vartime(&p, &batch, (batchsize * 2) + 1);
if (!ge25519_is_neutral_vartime(&p)) {
ret |= 2;
fallback:
for (i = 0; i < batchsize; i++) {
valid[i] = ED25519_FN(ed25519_sign_open) (m[i], mlen[i], pk[i], RS[i]) ? 0 : 1;
ret |= (valid[i] ^ 1);
}
}
m += batchsize;
mlen += batchsize;
pk += batchsize;
RS += batchsize;
num -= batchsize;
valid += batchsize;
}
for (i = 0; i < num; i++) {
valid[i] = ED25519_FN(ed25519_sign_open) (m[i], mlen[i], pk[i], RS[i]) ? 0 : 1;
ret |= (valid[i] ^ 1);
}
return ret;
}
|