1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
-- |
-- Module : Crypto.ECC
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : unknown
--
-- Elliptic Curve Cryptography
--
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Crypto.ECC
( Curve_P256R1(..)
, Curve_P384R1(..)
, Curve_P521R1(..)
, Curve_X25519(..)
, Curve_X448(..)
, Curve_Edwards25519(..)
, EllipticCurve(..)
, EllipticCurveDH(..)
, EllipticCurveArith(..)
, EllipticCurveBasepointArith(..)
, KeyPair(..)
, SharedSecret(..)
) where
import qualified Crypto.PubKey.ECC.P256 as P256
import qualified Crypto.ECC.Edwards25519 as Edwards25519
import qualified Crypto.ECC.Simple.Types as Simple
import qualified Crypto.ECC.Simple.Prim as Simple
import Crypto.Random
import Crypto.Error
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess, ScrubbedBytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Number.Basic (numBits)
import Crypto.Number.Serialize (i2ospOf_, os2ip)
import qualified Crypto.Number.Serialize.LE as LE
import qualified Crypto.PubKey.Curve25519 as X25519
import qualified Crypto.PubKey.Curve448 as X448
import Data.ByteArray (convert)
import Data.Data (Data())
import Data.Kind (Type)
import Data.Proxy
-- | An elliptic curve key pair composed of the private part (a scalar), and
-- the associated point.
data KeyPair curve = KeyPair
{ keypairGetPublic :: !(Point curve)
, keypairGetPrivate :: !(Scalar curve)
}
newtype SharedSecret = SharedSecret ScrubbedBytes
deriving (Eq, ByteArrayAccess, NFData)
class EllipticCurve curve where
-- | Point on an Elliptic Curve
type Point curve :: Type
-- | Scalar in the Elliptic Curve domain
type Scalar curve :: Type
-- | Generate a new random scalar on the curve.
-- The scalar will represent a number between 1 and the order of the curve non included
curveGenerateScalar :: MonadRandom randomly => proxy curve -> randomly (Scalar curve)
-- | Generate a new random keypair
curveGenerateKeyPair :: MonadRandom randomly => proxy curve -> randomly (KeyPair curve)
-- | Get the curve size in bits
curveSizeBits :: proxy curve -> Int
-- | Encode a elliptic curve point into binary form
encodePoint :: ByteArray bs => proxy curve -> Point curve -> bs
-- | Try to decode the binary form of an elliptic curve point
decodePoint :: ByteArray bs => proxy curve -> bs -> CryptoFailable (Point curve)
class EllipticCurve curve => EllipticCurveDH curve where
-- | Generate a Diffie hellman secret value.
--
-- This is generally just the .x coordinate of the resulting point, that
-- is not hashed.
--
-- use `pointSmul` to keep the result in Point format.
--
-- /WARNING:/ Curve implementations may return a special value or an
-- exception when the public point lies in a subgroup of small order.
-- This function is adequate when the scalar is in expected range and
-- contributory behaviour is not needed. Otherwise use 'ecdh'.
ecdhRaw :: proxy curve -> Scalar curve -> Point curve -> SharedSecret
ecdhRaw prx s = throwCryptoError . ecdh prx s
-- | Generate a Diffie hellman secret value and verify that the result
-- is not the point at infinity.
--
-- This additional test avoids risks existing with function 'ecdhRaw'.
-- Implementations always return a 'CryptoError' instead of a special
-- value or an exception.
ecdh :: proxy curve -> Scalar curve -> Point curve -> CryptoFailable SharedSecret
class (EllipticCurve curve, Eq (Point curve)) => EllipticCurveArith curve where
-- | Add points on a curve
pointAdd :: proxy curve -> Point curve -> Point curve -> Point curve
-- | Negate a curve point
pointNegate :: proxy curve -> Point curve -> Point curve
-- | Scalar Multiplication on a curve
pointSmul :: proxy curve -> Scalar curve -> Point curve -> Point curve
-- -- | Scalar Inverse
-- scalarInverse :: Scalar curve -> Scalar curve
class (EllipticCurveArith curve, Eq (Scalar curve)) => EllipticCurveBasepointArith curve where
-- | Get the curve order size in bits
curveOrderBits :: proxy curve -> Int
-- | Multiply a scalar with the curve base point
pointBaseSmul :: proxy curve -> Scalar curve -> Point curve
-- | Multiply the point @p@ with @s2@ and add a lifted to curve value @s1@
pointsSmulVarTime :: proxy curve -> Scalar curve -> Scalar curve -> Point curve -> Point curve
pointsSmulVarTime prx s1 s2 p = pointAdd prx (pointBaseSmul prx s1) (pointSmul prx s2 p)
-- | Encode an elliptic curve scalar into big-endian form
encodeScalar :: ByteArray bs => proxy curve -> Scalar curve -> bs
-- | Try to decode the big-endian form of an elliptic curve scalar
decodeScalar :: ByteArray bs => proxy curve -> bs -> CryptoFailable (Scalar curve)
-- | Convert an elliptic curve scalar to an integer
scalarToInteger :: proxy curve -> Scalar curve -> Integer
-- | Try to create an elliptic curve scalar from an integer
scalarFromInteger :: proxy curve -> Integer -> CryptoFailable (Scalar curve)
-- | Add two scalars and reduce modulo the curve order
scalarAdd :: proxy curve -> Scalar curve -> Scalar curve -> Scalar curve
-- | Multiply two scalars and reduce modulo the curve order
scalarMul :: proxy curve -> Scalar curve -> Scalar curve -> Scalar curve
-- | P256 Curve
--
-- also known as P256
data Curve_P256R1 = Curve_P256R1
deriving (Show,Data)
instance EllipticCurve Curve_P256R1 where
type Point Curve_P256R1 = P256.Point
type Scalar Curve_P256R1 = P256.Scalar
curveSizeBits _ = 256
curveGenerateScalar _ = P256.scalarGenerate
curveGenerateKeyPair _ = toKeyPair <$> P256.scalarGenerate
where toKeyPair scalar = KeyPair (P256.toPoint scalar) scalar
encodePoint _ p = mxy
where
mxy :: forall bs. ByteArray bs => bs
mxy = B.concat [uncompressed, xy]
where
uncompressed, xy :: bs
uncompressed = B.singleton 4
xy = P256.pointToBinary p
decodePoint _ mxy = case B.uncons mxy of
Nothing -> CryptoFailed CryptoError_PointSizeInvalid
Just (m,xy)
-- uncompressed
| m == 4 -> P256.pointFromBinary xy
| otherwise -> CryptoFailed CryptoError_PointFormatInvalid
instance EllipticCurveArith Curve_P256R1 where
pointAdd _ a b = P256.pointAdd a b
pointNegate _ p = P256.pointNegate p
pointSmul _ s p = P256.pointMul s p
instance EllipticCurveDH Curve_P256R1 where
ecdhRaw _ s p = SharedSecret $ P256.pointDh s p
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
instance EllipticCurveBasepointArith Curve_P256R1 where
curveOrderBits _ = 256
pointBaseSmul _ = P256.toPoint
pointsSmulVarTime _ = P256.pointsMulVarTime
encodeScalar _ = P256.scalarToBinary
decodeScalar _ = P256.scalarFromBinary
scalarToInteger _ = P256.scalarToInteger
scalarFromInteger _ = P256.scalarFromInteger
scalarAdd _ = P256.scalarAdd
scalarMul _ = P256.scalarMul
data Curve_P384R1 = Curve_P384R1
deriving (Show,Data)
instance EllipticCurve Curve_P384R1 where
type Point Curve_P384R1 = Simple.Point Simple.SEC_p384r1
type Scalar Curve_P384R1 = Simple.Scalar Simple.SEC_p384r1
curveSizeBits _ = 384
curveGenerateScalar _ = Simple.scalarGenerate
curveGenerateKeyPair _ = toKeyPair <$> Simple.scalarGenerate
where toKeyPair scalar = KeyPair (Simple.pointBaseMul scalar) scalar
encodePoint _ point = encodeECPoint point
decodePoint _ bs = decodeECPoint bs
instance EllipticCurveArith Curve_P384R1 where
pointAdd _ a b = Simple.pointAdd a b
pointNegate _ p = Simple.pointNegate p
pointSmul _ s p = Simple.pointMul s p
instance EllipticCurveDH Curve_P384R1 where
ecdh _ s p = encodeECShared prx (Simple.pointMul s p)
where
prx = Proxy :: Proxy Simple.SEC_p384r1
instance EllipticCurveBasepointArith Curve_P384R1 where
curveOrderBits _ = 384
pointBaseSmul _ = Simple.pointBaseMul
pointsSmulVarTime _ = ecPointsMulVarTime
encodeScalar _ = ecScalarToBinary
decodeScalar _ = ecScalarFromBinary
scalarToInteger _ = ecScalarToInteger
scalarFromInteger _ = ecScalarFromInteger
scalarAdd _ = ecScalarAdd
scalarMul _ = ecScalarMul
data Curve_P521R1 = Curve_P521R1
deriving (Show,Data)
instance EllipticCurve Curve_P521R1 where
type Point Curve_P521R1 = Simple.Point Simple.SEC_p521r1
type Scalar Curve_P521R1 = Simple.Scalar Simple.SEC_p521r1
curveSizeBits _ = 521
curveGenerateScalar _ = Simple.scalarGenerate
curveGenerateKeyPair _ = toKeyPair <$> Simple.scalarGenerate
where toKeyPair scalar = KeyPair (Simple.pointBaseMul scalar) scalar
encodePoint _ point = encodeECPoint point
decodePoint _ bs = decodeECPoint bs
instance EllipticCurveArith Curve_P521R1 where
pointAdd _ a b = Simple.pointAdd a b
pointNegate _ p = Simple.pointNegate p
pointSmul _ s p = Simple.pointMul s p
instance EllipticCurveDH Curve_P521R1 where
ecdh _ s p = encodeECShared prx (Simple.pointMul s p)
where
prx = Proxy :: Proxy Simple.SEC_p521r1
instance EllipticCurveBasepointArith Curve_P521R1 where
curveOrderBits _ = 521
pointBaseSmul _ = Simple.pointBaseMul
pointsSmulVarTime _ = ecPointsMulVarTime
encodeScalar _ = ecScalarToBinary
decodeScalar _ = ecScalarFromBinary
scalarToInteger _ = ecScalarToInteger
scalarFromInteger _ = ecScalarFromInteger
scalarAdd _ = ecScalarAdd
scalarMul _ = ecScalarMul
data Curve_X25519 = Curve_X25519
deriving (Show,Data)
instance EllipticCurve Curve_X25519 where
type Point Curve_X25519 = X25519.PublicKey
type Scalar Curve_X25519 = X25519.SecretKey
curveSizeBits _ = 255
curveGenerateScalar _ = X25519.generateSecretKey
curveGenerateKeyPair _ = do
s <- X25519.generateSecretKey
return $ KeyPair (X25519.toPublic s) s
encodePoint _ p = B.convert p
decodePoint _ bs = X25519.publicKey bs
instance EllipticCurveDH Curve_X25519 where
ecdhRaw _ s p = SharedSecret $ convert secret
where secret = X25519.dh p s
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
data Curve_X448 = Curve_X448
deriving (Show,Data)
instance EllipticCurve Curve_X448 where
type Point Curve_X448 = X448.PublicKey
type Scalar Curve_X448 = X448.SecretKey
curveSizeBits _ = 448
curveGenerateScalar _ = X448.generateSecretKey
curveGenerateKeyPair _ = do
s <- X448.generateSecretKey
return $ KeyPair (X448.toPublic s) s
encodePoint _ p = B.convert p
decodePoint _ bs = X448.publicKey bs
instance EllipticCurveDH Curve_X448 where
ecdhRaw _ s p = SharedSecret $ convert secret
where secret = X448.dh p s
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
data Curve_Edwards25519 = Curve_Edwards25519
deriving (Show,Data)
instance EllipticCurve Curve_Edwards25519 where
type Point Curve_Edwards25519 = Edwards25519.Point
type Scalar Curve_Edwards25519 = Edwards25519.Scalar
curveSizeBits _ = 255
curveGenerateScalar _ = Edwards25519.scalarGenerate
curveGenerateKeyPair _ = toKeyPair <$> Edwards25519.scalarGenerate
where toKeyPair scalar = KeyPair (Edwards25519.toPoint scalar) scalar
encodePoint _ point = Edwards25519.pointEncode point
decodePoint _ bs = Edwards25519.pointDecode bs
instance EllipticCurveArith Curve_Edwards25519 where
pointAdd _ a b = Edwards25519.pointAdd a b
pointNegate _ p = Edwards25519.pointNegate p
pointSmul _ s p = Edwards25519.pointMul s p
instance EllipticCurveBasepointArith Curve_Edwards25519 where
curveOrderBits _ = 253
pointBaseSmul _ = Edwards25519.toPoint
pointsSmulVarTime _ = Edwards25519.pointsMulVarTime
encodeScalar _ = B.reverse . Edwards25519.scalarEncode
decodeScalar _ bs
| B.length bs == 32 = Edwards25519.scalarDecodeLong (B.reverse bs)
| otherwise = CryptoFailed CryptoError_SecretKeySizeInvalid
scalarToInteger _ s = LE.os2ip (Edwards25519.scalarEncode s :: B.Bytes)
scalarFromInteger _ i =
case LE.i2ospOf 32 i of
Nothing -> CryptoFailed CryptoError_SecretKeySizeInvalid
Just bs -> Edwards25519.scalarDecodeLong (bs :: B.Bytes)
scalarAdd _ = Edwards25519.scalarAdd
scalarMul _ = Edwards25519.scalarMul
checkNonZeroDH :: SharedSecret -> CryptoFailable SharedSecret
checkNonZeroDH s@(SharedSecret b)
| B.constAllZero b = CryptoFailed CryptoError_ScalarMultiplicationInvalid
| otherwise = CryptoPassed s
encodeECShared :: Simple.Curve curve => Proxy curve -> Simple.Point curve -> CryptoFailable SharedSecret
encodeECShared _ Simple.PointO = CryptoFailed CryptoError_ScalarMultiplicationInvalid
encodeECShared prx (Simple.Point x _) = CryptoPassed . SharedSecret $ i2ospOf_ (Simple.curveSizeBytes prx) x
encodeECPoint :: forall curve bs . (Simple.Curve curve, ByteArray bs) => Simple.Point curve -> bs
encodeECPoint Simple.PointO = error "encodeECPoint: cannot serialize point at infinity"
encodeECPoint (Simple.Point x y) = B.concat [uncompressed,xb,yb]
where
size = Simple.curveSizeBytes (Proxy :: Proxy curve)
uncompressed, xb, yb :: bs
uncompressed = B.singleton 4
xb = i2ospOf_ size x
yb = i2ospOf_ size y
decodeECPoint :: (Simple.Curve curve, ByteArray bs) => bs -> CryptoFailable (Simple.Point curve)
decodeECPoint mxy = case B.uncons mxy of
Nothing -> CryptoFailed CryptoError_PointSizeInvalid
Just (m,xy)
-- uncompressed
| m == 4 ->
let siz = B.length xy `div` 2
(xb,yb) = B.splitAt siz xy
x = os2ip xb
y = os2ip yb
in Simple.pointFromIntegers (x,y)
| otherwise -> CryptoFailed CryptoError_PointFormatInvalid
ecPointsMulVarTime :: forall curve . Simple.Curve curve
=> Simple.Scalar curve
-> Simple.Scalar curve -> Simple.Point curve
-> Simple.Point curve
ecPointsMulVarTime n1 = Simple.pointAddTwoMuls n1 g
where g = Simple.curveEccG $ Simple.curveParameters (Proxy :: Proxy curve)
ecScalarFromBinary :: forall curve bs . (Simple.Curve curve, ByteArrayAccess bs)
=> bs -> CryptoFailable (Simple.Scalar curve)
ecScalarFromBinary ba
| B.length ba /= size = CryptoFailed CryptoError_SecretKeySizeInvalid
| otherwise = CryptoPassed (Simple.Scalar $ os2ip ba)
where size = ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarToBinary :: forall curve bs . (Simple.Curve curve, ByteArray bs)
=> Simple.Scalar curve -> bs
ecScalarToBinary (Simple.Scalar s) = i2ospOf_ size s
where size = ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarFromInteger :: forall curve . Simple.Curve curve
=> Integer -> CryptoFailable (Simple.Scalar curve)
ecScalarFromInteger s
| numBits s > nb = CryptoFailed CryptoError_SecretKeySizeInvalid
| otherwise = CryptoPassed (Simple.Scalar s)
where nb = 8 * ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarToInteger :: Simple.Scalar curve -> Integer
ecScalarToInteger (Simple.Scalar s) = s
ecCurveOrderBytes :: Simple.Curve c => proxy c -> Int
ecCurveOrderBytes prx = (numBits n + 7) `div` 8
where n = Simple.curveEccN $ Simple.curveParameters prx
ecScalarAdd :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Simple.Scalar curve -> Simple.Scalar curve
ecScalarAdd (Simple.Scalar a) (Simple.Scalar b) = Simple.Scalar ((a + b) `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters (Proxy :: Proxy curve)
ecScalarMul :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Simple.Scalar curve -> Simple.Scalar curve
ecScalarMul (Simple.Scalar a) (Simple.Scalar b) = Simple.Scalar ((a * b) `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters (Proxy :: Proxy curve)
|