1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
-- |
-- Module : Crypto.Number.Basic
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
{-# LANGUAGE BangPatterns #-}
module Crypto.Number.Basic
( sqrti
, gcde
, areEven
, log2
, numBits
, numBytes
, asPowerOf2AndOdd
) where
import Data.Bits
import Crypto.Number.Compat
-- | @sqrti@ returns two integers @(l,b)@ so that @l <= sqrt i <= b@.
-- The implementation is quite naive, use an approximation for the first number
-- and use a dichotomy algorithm to compute the bound relatively efficiently.
sqrti :: Integer -> (Integer, Integer)
sqrti i
| i < 0 = error "cannot compute negative square root"
| i == 0 = (0,0)
| i == 1 = (1,1)
| i == 2 = (1,2)
| otherwise = loop x0
where
nbdigits = length $ show i
x0n = (if even nbdigits then nbdigits - 2 else nbdigits - 1) `div` 2
x0 = if even nbdigits then 2 * 10 ^ x0n else 6 * 10 ^ x0n
loop x = case compare (sq x) i of
LT -> iterUp x
EQ -> (x, x)
GT -> iterDown x
iterUp lb = if sq ub >= i then iter lb ub else iterUp ub
where ub = lb * 2
iterDown ub = if sq lb >= i then iterDown lb else iter lb ub
where lb = ub `div` 2
iter lb ub
| lb == ub = (lb, ub)
| lb+1 == ub = (lb, ub)
| otherwise =
let d = (ub - lb) `div` 2 in
if sq (lb + d) >= i
then iter lb (ub-d)
else iter (lb+d) ub
sq a = a * a
-- | Get the extended GCD of two integer using integer divMod
--
-- gcde 'a' 'b' find (x,y,gcd(a,b)) where ax + by = d
--
gcde :: Integer -> Integer -> (Integer, Integer, Integer)
gcde a b = onGmpUnsupported (gmpGcde a b) $
if d < 0 then (-x,-y,-d) else (x,y,d)
where
(d, x, y) = f (a,1,0) (b,0,1)
f t (0, _, _) = t
f (a', sa, ta) t@(b', sb, tb) =
let (q, r) = a' `divMod` b' in
f t (r, sa - (q * sb), ta - (q * tb))
-- | Check if a list of integer are all even
areEven :: [Integer] -> Bool
areEven = and . map even
-- | Compute the binary logarithm of a integer
log2 :: Integer -> Int
log2 n = onGmpUnsupported (gmpLog2 n) $ imLog 2 n
where
-- http://www.haskell.org/pipermail/haskell-cafe/2008-February/039465.html
imLog b x = if x < b then 0 else (x `div` b^l) `doDiv` l
where
l = 2 * imLog (b * b) x
doDiv x' l' = if x' < b then l' else (x' `div` b) `doDiv` (l' + 1)
{-# INLINE log2 #-}
-- | Compute the number of bits for an integer
numBits :: Integer -> Int
numBits n = gmpSizeInBits n `onGmpUnsupported` (if n == 0 then 1 else computeBits 0 n)
where computeBits !acc i
| q == 0 =
if r >= 0x80 then acc+8
else if r >= 0x40 then acc+7
else if r >= 0x20 then acc+6
else if r >= 0x10 then acc+5
else if r >= 0x08 then acc+4
else if r >= 0x04 then acc+3
else if r >= 0x02 then acc+2
else if r >= 0x01 then acc+1
else acc -- should be catch by previous loop
| otherwise = computeBits (acc+8) q
where (q,r) = i `divMod` 256
-- | Compute the number of bytes for an integer
numBytes :: Integer -> Int
numBytes n = gmpSizeInBytes n `onGmpUnsupported` ((numBits n + 7) `div` 8)
-- | Express an integer as an odd number and a power of 2
asPowerOf2AndOdd :: Integer -> (Int, Integer)
asPowerOf2AndOdd a
| a == 0 = (0, 0)
| odd a = (0, a)
| a < 0 = let (e, a1) = asPowerOf2AndOdd $ abs a in (e, -a1)
| isPowerOf2 a = (log2 a, 1)
| otherwise = loop a 0
where
isPowerOf2 n = (n /= 0) && ((n .&. (n - 1)) == 0)
loop n pw = if n `mod` 2 == 0 then loop (n `div` 2) (pw + 1)
else (pw, n)
|