File: Compat.hs

package info (click to toggle)
haskell-cryptonite 0.30-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,372 kB
  • sloc: ansic: 22,009; haskell: 18,423; makefile: 8
file content (195 lines) | stat: -rw-r--r-- 6,119 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
-- |
-- Module      : Crypto.Number.Compat
-- License     : BSD-style
-- Maintainer  : Vincent Hanquez <vincent@snarc.org>
-- Stability   : experimental
-- Portability : Good
--
{-# LANGUAGE CPP           #-}
{-# LANGUAGE MagicHash     #-}
{-# LANGUAGE BangPatterns  #-}
{-# LANGUAGE UnboxedTuples #-}
module Crypto.Number.Compat
    ( GmpSupported(..)
    , onGmpUnsupported
    , gmpGcde
    , gmpLog2
    , gmpPowModSecInteger
    , gmpPowModInteger
    , gmpInverse
    , gmpNextPrime
    , gmpTestPrimeMillerRabin
    , gmpSizeInBytes
    , gmpSizeInBits
    , gmpExportInteger
    , gmpExportIntegerLE
    , gmpImportInteger
    , gmpImportIntegerLE
    ) where

#ifndef MIN_VERSION_integer_gmp
#define MIN_VERSION_integer_gmp(a,b,c) 0
#endif

#if MIN_VERSION_integer_gmp(0,5,1)
import GHC.Integer.GMP.Internals
import GHC.Base
import GHC.Integer.Logarithms (integerLog2#)
#endif
import Data.Word
import GHC.Ptr (Ptr(..))

-- | GMP Supported / Unsupported
data GmpSupported a = GmpSupported a
                    | GmpUnsupported
                    deriving (Show,Eq)

-- | Simple combinator in case the operation is not supported through GMP
onGmpUnsupported :: GmpSupported a -> a -> a
onGmpUnsupported (GmpSupported a) _ = a
onGmpUnsupported GmpUnsupported   f = f

-- | Compute the GCDE of a two integer through GMP
gmpGcde :: Integer -> Integer -> GmpSupported (Integer, Integer, Integer)
#if MIN_VERSION_integer_gmp(0,5,1)
gmpGcde a b =
    GmpSupported (s, t, g)
  where (# g, s #) = gcdExtInteger a b
        t = (g - s * a) `div` b
#else
gmpGcde _ _ = GmpUnsupported
#endif

-- | Compute the binary logarithm of an integer through GMP
gmpLog2 :: Integer -> GmpSupported Int
#if MIN_VERSION_integer_gmp(0,5,1)
gmpLog2 0 = GmpSupported 0
gmpLog2 x = GmpSupported (I# (integerLog2# x))
#else
gmpLog2 _ = GmpUnsupported
#endif

-- | Compute the power modulus using extra security to remain constant
-- time wise through GMP
gmpPowModSecInteger :: Integer -> Integer -> Integer -> GmpSupported Integer
#if MIN_VERSION_integer_gmp(1,1,0)
gmpPowModSecInteger _ _ _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(1,0,2)
gmpPowModSecInteger b e m = GmpSupported (powModSecInteger b e m)
#elif MIN_VERSION_integer_gmp(1,0,0)
gmpPowModSecInteger _ _ _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpPowModSecInteger b e m = GmpSupported (powModSecInteger b e m)
#else
gmpPowModSecInteger _ _ _ = GmpUnsupported
#endif

-- | Compute the power modulus through GMP
gmpPowModInteger :: Integer -> Integer -> Integer -> GmpSupported Integer
#if MIN_VERSION_integer_gmp(0,5,1)
gmpPowModInteger b e m = GmpSupported (powModInteger b e m)
#else
gmpPowModInteger _ _ _ = GmpUnsupported
#endif

-- | Inverse modulus of a number through GMP
gmpInverse :: Integer -> Integer -> GmpSupported (Maybe Integer)
#if MIN_VERSION_integer_gmp(0,5,1)
gmpInverse g m
    | r == 0    = GmpSupported Nothing
    | otherwise = GmpSupported (Just r)
  where r = recipModInteger g m
#else
gmpInverse _ _ = GmpUnsupported
#endif

-- | Get the next prime from a specific value through GMP
gmpNextPrime :: Integer -> GmpSupported Integer
#if MIN_VERSION_integer_gmp(1,1,0)
gmpNextPrime _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpNextPrime n = GmpSupported (nextPrimeInteger n)
#else
gmpNextPrime _ = GmpUnsupported
#endif

-- | Test if a number is prime using Miller Rabin
gmpTestPrimeMillerRabin :: Int -> Integer -> GmpSupported Bool
#if MIN_VERSION_integer_gmp(1,1,0)
gmpTestPrimeMillerRabin _ _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpTestPrimeMillerRabin (I# tries) !n = GmpSupported $
    case testPrimeInteger n tries of
        0# -> False
        _  -> True
#else
gmpTestPrimeMillerRabin _ _ = GmpUnsupported
#endif

-- | Return the size in bytes of an integer
gmpSizeInBytes :: Integer -> GmpSupported Int
#if MIN_VERSION_integer_gmp(0,5,1)
gmpSizeInBytes n = GmpSupported (I# (word2Int# (sizeInBaseInteger n 256#)))
#else
gmpSizeInBytes _ = GmpUnsupported
#endif

-- | Return the size in bits of an integer
gmpSizeInBits :: Integer -> GmpSupported Int
#if MIN_VERSION_integer_gmp(0,5,1)
gmpSizeInBits n = GmpSupported (I# (word2Int# (sizeInBaseInteger n 2#)))
#else
gmpSizeInBits _ = GmpUnsupported
#endif

-- | Export an integer to a memory (big-endian)
gmpExportInteger :: Integer -> Ptr Word8 -> GmpSupported (IO ())
#if MIN_VERSION_integer_gmp(1,0,0)
gmpExportInteger n (Ptr addr) = GmpSupported $ do
    _ <- exportIntegerToAddr n addr 1#
    return ()
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpExportInteger n (Ptr addr) = GmpSupported $ IO $ \s ->
    case exportIntegerToAddr n addr 1# s of
        (# s2, _ #) -> (# s2, () #)
#else
gmpExportInteger _ _ = GmpUnsupported
#endif

-- | Export an integer to a memory (little-endian)
gmpExportIntegerLE :: Integer -> Ptr Word8 -> GmpSupported (IO ())
#if MIN_VERSION_integer_gmp(1,0,0)
gmpExportIntegerLE n (Ptr addr) = GmpSupported $ do
    _ <- exportIntegerToAddr n addr 0#
    return ()
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpExportIntegerLE n (Ptr addr) = GmpSupported $ IO $ \s ->
    case exportIntegerToAddr n addr 0# s of
        (# s2, _ #) -> (# s2, () #)
#else
gmpExportIntegerLE _ _ = GmpUnsupported
#endif

-- | Import an integer from a memory (big-endian)
gmpImportInteger :: Int -> Ptr Word8 -> GmpSupported (IO Integer)
#if MIN_VERSION_integer_gmp(1,0,0)
gmpImportInteger (I# n) (Ptr addr) = GmpSupported $
    importIntegerFromAddr addr (int2Word# n) 1#
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpImportInteger (I# n) (Ptr addr) = GmpSupported $ IO $ \s ->
    importIntegerFromAddr addr (int2Word# n) 1# s
#else
gmpImportInteger _ _ = GmpUnsupported
#endif

-- | Import an integer from a memory (little-endian)
gmpImportIntegerLE :: Int -> Ptr Word8 -> GmpSupported (IO Integer)
#if MIN_VERSION_integer_gmp(1,0,0)
gmpImportIntegerLE (I# n) (Ptr addr) = GmpSupported $
    importIntegerFromAddr addr (int2Word# n) 0#
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpImportIntegerLE (I# n) (Ptr addr) = GmpSupported $ IO $ \s ->
    importIntegerFromAddr addr (int2Word# n) 0# s
#else
gmpImportIntegerLE _ _ = GmpUnsupported
#endif