1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
{-# LANGUAGE BangPatterns #-}
-- |
-- Module : Crypto.Number.ModArithmetic
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
module Crypto.Number.ModArithmetic
(
-- * Exponentiation
expSafe
, expFast
-- * Inverse computing
, inverse
, inverseCoprimes
, inverseFermat
-- * Squares
, jacobi
, squareRoot
) where
import Control.Exception (throw, Exception)
import Crypto.Number.Basic
import Crypto.Number.Compat
-- | Raised when two numbers are supposed to be coprimes but are not.
data CoprimesAssertionError = CoprimesAssertionError
deriving (Show)
instance Exception CoprimesAssertionError
-- | Compute the modular exponentiation of base^exponent using
-- algorithms design to avoid side channels and timing measurement
--
-- Modulo need to be odd otherwise the normal fast modular exponentiation
-- is used.
--
-- When used with integer-simple, this function is not different
-- from expFast, and thus provide the same unstudied and dubious
-- timing and side channels claims.
--
-- Before GHC 8.4.2, powModSecInteger is missing from integer-gmp,
-- so expSafe has the same security as expFast.
expSafe :: Integer -- ^ base
-> Integer -- ^ exponent
-> Integer -- ^ modulo
-> Integer -- ^ result
expSafe b e m
| odd m = gmpPowModSecInteger b e m `onGmpUnsupported`
(gmpPowModInteger b e m `onGmpUnsupported`
exponentiation b e m)
| otherwise = gmpPowModInteger b e m `onGmpUnsupported`
exponentiation b e m
-- | Compute the modular exponentiation of base^exponent using
-- the fastest algorithm without any consideration for
-- hiding parameters.
--
-- Use this function when all the parameters are public,
-- otherwise 'expSafe' should be preferred.
expFast :: Integer -- ^ base
-> Integer -- ^ exponent
-> Integer -- ^ modulo
-> Integer -- ^ result
expFast b e m = gmpPowModInteger b e m `onGmpUnsupported` exponentiation b e m
-- | @exponentiation@ computes modular exponentiation as /b^e mod m/
-- using repetitive squaring.
exponentiation :: Integer -> Integer -> Integer -> Integer
exponentiation b e m
| b == 1 = b
| e == 0 = 1
| e == 1 = b `mod` m
| even e = let p = exponentiation b (e `div` 2) m `mod` m
in (p^(2::Integer)) `mod` m
| otherwise = (b * exponentiation b (e-1) m) `mod` m
-- | @inverse@ computes the modular inverse as in /g^(-1) mod m/.
inverse :: Integer -> Integer -> Maybe Integer
inverse g m = gmpInverse g m `onGmpUnsupported` v
where
v
| d > 1 = Nothing
| otherwise = Just (x `mod` m)
(x,_,d) = gcde g m
-- | Compute the modular inverse of two coprime numbers.
-- This is equivalent to inverse except that the result
-- is known to exists.
--
-- If the numbers are not defined as coprime, this function
-- will raise a 'CoprimesAssertionError'.
inverseCoprimes :: Integer -> Integer -> Integer
inverseCoprimes g m =
case inverse g m of
Nothing -> throw CoprimesAssertionError
Just i -> i
-- | Computes the Jacobi symbol (a/n).
-- 0 ≤ a < n; n ≥ 3 and odd.
--
-- The Legendre and Jacobi symbols are indistinguishable exactly when the
-- lower argument is an odd prime, in which case they have the same value.
--
-- See algorithm 2.149 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
jacobi :: Integer -> Integer -> Maybe Integer
jacobi a n
| n < 3 || even n = Nothing
| a == 0 || a == 1 = Just a
| n <= a = jacobi (a `mod` n) n
| a < 0 =
let b = if n `mod` 4 == 1 then 1 else -1
in fmap (*b) (jacobi (-a) n)
| otherwise =
let (e, a1) = asPowerOf2AndOdd a
nMod8 = n `mod` 8
nMod4 = n `mod` 4
a1Mod4 = a1 `mod` 4
s' = if even e || nMod8 == 1 || nMod8 == 7 then 1 else -1
s = if nMod4 == 3 && a1Mod4 == 3 then -s' else s'
n1 = n `mod` a1
in if a1 == 1 then Just s
else fmap (*s) (jacobi n1 a1)
-- | Modular inverse using Fermat's little theorem. This works only when
-- the modulus is prime but avoids side channels like in 'expSafe'.
inverseFermat :: Integer -> Integer -> Integer
inverseFermat g p = expSafe g (p - 2) p
-- | Raised when the assumption about the modulus is invalid.
data ModulusAssertionError = ModulusAssertionError
deriving (Show)
instance Exception ModulusAssertionError
-- | Modular square root of @g@ modulo a prime @p@.
--
-- If the modulus is found not to be prime, the function will raise a
-- 'ModulusAssertionError'.
--
-- This implementation is variable time and should be used with public
-- parameters only.
squareRoot :: Integer -> Integer -> Maybe Integer
squareRoot p
| p < 2 = throw ModulusAssertionError
| otherwise =
case p `divMod` 8 of
(v, 3) -> method1 (2 * v + 1)
(v, 7) -> method1 (2 * v + 2)
(u, 5) -> method2 u
(_, 1) -> tonelliShanks p
(0, 2) -> \a -> Just (if even a then 0 else 1)
_ -> throw ModulusAssertionError
where
x `eqMod` y = (x - y) `mod` p == 0
validate g y | (y * y) `eqMod` g = Just y
| otherwise = Nothing
-- p == 4u + 3 and u' == u + 1
method1 u' g =
let y = expFast g u' p
in validate g y
-- p == 8u + 5
method2 u g =
let gamma = expFast (2 * g) u p
g_gamma = g * gamma
i = (2 * g_gamma * gamma) `mod` p
y = (g_gamma * (i - 1)) `mod` p
in validate g y
tonelliShanks :: Integer -> Integer -> Maybe Integer
tonelliShanks p a
| aa == 0 = Just 0
| otherwise =
case expFast aa p2 p of
b | b == p1 -> Nothing
| b == 1 -> Just $ go (expFast aa ((s + 1) `div` 2) p)
(expFast aa s p)
(expFast n s p)
e
| otherwise -> throw ModulusAssertionError
where
aa = a `mod` p
p1 = p - 1
p2 = p1 `div` 2
n = findN 2
x `mul` y = (x * y) `mod` p
pow2m 0 x = x
pow2m i x = pow2m (i - 1) (x `mul` x)
(e, s) = asPowerOf2AndOdd p1
-- find a quadratic non-residue
findN i
| expFast i p2 p == p1 = i
| otherwise = findN (i + 1)
-- find m such that b^(2^m) == 1 (mod p)
findM b i
| b == 1 = i
| otherwise = findM (b `mul` b) (i + 1)
go !x b g !r
| b == 1 = x
| otherwise =
let r' = findM b 0
z = pow2m (r - r' - 1) g
x' = x `mul` z
b' = b `mul` g'
g' = z `mul` z
in go x' b' g' r'
|