1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
-- |
-- Module : Crypto.Number.Prime
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
{-# LANGUAGE BangPatterns #-}
module Crypto.Number.Prime
(
generatePrime
, generateSafePrime
, isProbablyPrime
, findPrimeFrom
, findPrimeFromWith
, primalityTestMillerRabin
, primalityTestNaive
, primalityTestFermat
, isCoprime
) where
import Crypto.Number.Compat
import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde)
import Crypto.Number.ModArithmetic (expSafe)
import Crypto.Random.Types
import Crypto.Random.Probabilistic
import Crypto.Error
import Data.Bits
-- | Returns if the number is probably prime.
-- First a list of small primes are implicitely tested for divisibility,
-- then a fermat primality test is used with arbitrary numbers and
-- then the Miller Rabin algorithm is used with an accuracy of 30 recursions.
isProbablyPrime :: Integer -> Bool
isProbablyPrime !n
| any (\p -> p `divides` n) (filter (< n) firstPrimes) = False
| n >= 2 && n <= 2903 = True
| primalityTestFermat 50 (n `div` 2) n = primalityTestMillerRabin 30 n
| otherwise = False
-- | Generate a prime number of the required bitsize (i.e. in the range
-- [2^(b-1)+2^(b-2), 2^b)).
--
-- May throw a 'CryptoError_PrimeSizeInvalid' if the requested size is less
-- than 5 bits, as the smallest prime meeting these conditions is 29.
-- This function requires that the two highest bits are set, so that when
-- multiplied with another prime to create a key, it is guaranteed to be of
-- the proper size.
generatePrime :: MonadRandom m => Int -> m Integer
generatePrime bits = do
if bits < 5 then
throwCryptoError $ CryptoFailed $ CryptoError_PrimeSizeInvalid
else do
sp <- generateParams bits (Just SetTwoHighest) True
let prime = findPrimeFrom sp
if prime < 1 `shiftL` bits then
return $ prime
else generatePrime bits
-- | Generate a prime number of the form 2p+1 where p is also prime.
-- it is also knowed as a Sophie Germaine prime or safe prime.
--
-- The number of safe prime is significantly smaller to the number of prime,
-- as such it shouldn't be used if this number is supposed to be kept safe.
--
-- May throw a 'CryptoError_PrimeSizeInvalid' if the requested size is less than
-- 6 bits, as the smallest safe prime with the two highest bits set is 59.
generateSafePrime :: MonadRandom m => Int -> m Integer
generateSafePrime bits = do
if bits < 6 then
throwCryptoError $ CryptoFailed $ CryptoError_PrimeSizeInvalid
else do
sp <- generateParams bits (Just SetTwoHighest) True
let p = findPrimeFromWith (\i -> isProbablyPrime (2*i+1)) (sp `div` 2)
let val = 2 * p + 1
if val < 1 `shiftL` bits then
return $ val
else generateSafePrime bits
-- | Find a prime from a starting point where the property hold.
findPrimeFromWith :: (Integer -> Bool) -> Integer -> Integer
findPrimeFromWith prop !n
| even n = findPrimeFromWith prop (n+1)
| otherwise =
if not (isProbablyPrime n)
then findPrimeFromWith prop (n+2)
else
if prop n
then n
else findPrimeFromWith prop (n+2)
-- | Find a prime from a starting point with no specific property.
findPrimeFrom :: Integer -> Integer
findPrimeFrom n =
case gmpNextPrime n of
GmpSupported p -> p
GmpUnsupported -> findPrimeFromWith (\_ -> True) n
-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: Int -> Integer -> Bool
primalityTestMillerRabin tries !n =
case gmpTestPrimeMillerRabin tries n of
GmpSupported b -> b
GmpUnsupported -> probabilistic run
where
run
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
| even n = return False
| tries <= 0 = error "Miller-Rabin tries need to be > 0"
| otherwise = loop <$> generateTries tries
!nm1 = n-1
!nm2 = n-2
(!s,!d) = (factorise 0 nm1)
generateTries 0 = return []
generateTries t = do
v <- generateBetween 2 nm2
vs <- generateTries (t-1)
return (v:vs)
-- factorise n-1 into the form 2^s*d
factorise :: Integer -> Integer -> (Integer, Integer)
factorise !si !vi
| vi `testBit` 0 = (si, vi)
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continuously, but just once.
expmod = expSafe
-- when iteration reach zero, we have a probable prime
loop [] = True
loop (w:ws) = let x = expmod w d n
in if x == (1 :: Integer) || x == nm1
then loop ws
else loop' ws ((x*x) `mod` n) 1
-- loop from 1 to s-1. if we reach the end then it's composite
loop' ws !x2 !r
| r == s = False
| x2 == 1 = False
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
| otherwise = loop ws
{-
n < z -> witness to test
1373653 [2,3]
9080191 [31,73]
4759123141 [2,7,61]
2152302898747 [2,3,5,7,11]
3474749660383 [2,3,5,7,11,13]
341550071728321 [2,3,5,7,11,13,17]
-}
-- | Probabilitic Test using Fermat primility test.
-- Beware of Carmichael numbers that are Fermat liars, i.e. this test
-- is useless for them. always combines with some other test.
primalityTestFermat :: Int -- ^ number of iterations of the algorithm
-> Integer -- ^ starting a
-> Integer -- ^ number to test for primality
-> Bool
primalityTestFermat n a p = and $ map expTest [a..(a+fromIntegral n)]
where !pm1 = p-1
expTest i = expSafe i pm1 p == 1
-- | Test naively is integer is prime.
-- while naive, we skip even number and stop iteration at i > sqrt(n)
primalityTestNaive :: Integer -> Bool
primalityTestNaive n
| n <= 1 = False
| n == 2 = True
| even n = False
| otherwise = search 3
where !ubound = snd $ sqrti n
search !i
| i > ubound = True
| i `divides` n = False
| otherwise = search (i+2)
-- | Test is two integer are coprime to each other
isCoprime :: Integer -> Integer -> Bool
isCoprime m n = case gcde m n of (_,_,d) -> d == 1
-- | List of the first primes till 2903.
firstPrimes :: [Integer]
firstPrimes =
[ 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29
, 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71
, 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 , 109 , 113
, 127 , 131 , 137 , 139 , 149 , 151 , 157 , 163 , 167 , 173
, 179 , 181 , 191 , 193 , 197 , 199 , 211 , 223 , 227 , 229
, 233 , 239 , 241 , 251 , 257 , 263 , 269 , 271 , 277 , 281
, 283 , 293 , 307 , 311 , 313 , 317 , 331 , 337 , 347 , 349
, 353 , 359 , 367 , 373 , 379 , 383 , 389 , 397 , 401 , 409
, 419 , 421 , 431 , 433 , 439 , 443 , 449 , 457 , 461 , 463
, 467 , 479 , 487 , 491 , 499 , 503 , 509 , 521 , 523 , 541
, 547 , 557 , 563 , 569 , 571 , 577 , 587 , 593 , 599 , 601
, 607 , 613 , 617 , 619 , 631 , 641 , 643 , 647 , 653 , 659
, 661 , 673 , 677 , 683 , 691 , 701 , 709 , 719 , 727 , 733
, 739 , 743 , 751 , 757 , 761 , 769 , 773 , 787 , 797 , 809
, 811 , 821 , 823 , 827 , 829 , 839 , 853 , 857 , 859 , 863
, 877 , 881 , 883 , 887 , 907 , 911 , 919 , 929 , 937 , 941
, 947 , 953 , 967 , 971 , 977 , 983 , 991 , 997 , 1009 , 1013
, 1019 , 1021 , 1031 , 1033 , 1039 , 1049 , 1051 , 1061 , 1063 , 1069
, 1087 , 1091 , 1093 , 1097 , 1103 , 1109 , 1117 , 1123 , 1129 , 1151
, 1153 , 1163 , 1171 , 1181 , 1187 , 1193 , 1201 , 1213 , 1217 , 1223
, 1229 , 1231 , 1237 , 1249 , 1259 , 1277 , 1279 , 1283 , 1289 , 1291
, 1297 , 1301 , 1303 , 1307 , 1319 , 1321 , 1327 , 1361 , 1367 , 1373
, 1381 , 1399 , 1409 , 1423 , 1427 , 1429 , 1433 , 1439 , 1447 , 1451
, 1453 , 1459 , 1471 , 1481 , 1483 , 1487 , 1489 , 1493 , 1499 , 1511
, 1523 , 1531 , 1543 , 1549 , 1553 , 1559 , 1567 , 1571 , 1579 , 1583
, 1597 , 1601 , 1607 , 1609 , 1613 , 1619 , 1621 , 1627 , 1637 , 1657
, 1663 , 1667 , 1669 , 1693 , 1697 , 1699 , 1709 , 1721 , 1723 , 1733
, 1741 , 1747 , 1753 , 1759 , 1777 , 1783 , 1787 , 1789 , 1801 , 1811
, 1823 , 1831 , 1847 , 1861 , 1867 , 1871 , 1873 , 1877 , 1879 , 1889
, 1901 , 1907 , 1913 , 1931 , 1933 , 1949 , 1951 , 1973 , 1979 , 1987
, 1993 , 1997 , 1999 , 2003 , 2011 , 2017 , 2027 , 2029 , 2039 , 2053
, 2063 , 2069 , 2081 , 2083 , 2087 , 2089 , 2099 , 2111 , 2113 , 2129
, 2131 , 2137 , 2141 , 2143 , 2153 , 2161 , 2179 , 2203 , 2207 , 2213
, 2221 , 2237 , 2239 , 2243 , 2251 , 2267 , 2269 , 2273 , 2281 , 2287
, 2293 , 2297 , 2309 , 2311 , 2333 , 2339 , 2341 , 2347 , 2351 , 2357
, 2371 , 2377 , 2381 , 2383 , 2389 , 2393 , 2399 , 2411 , 2417 , 2423
, 2437 , 2441 , 2447 , 2459 , 2467 , 2473 , 2477 , 2503 , 2521 , 2531
, 2539 , 2543 , 2549 , 2551 , 2557 , 2579 , 2591 , 2593 , 2609 , 2617
, 2621 , 2633 , 2647 , 2657 , 2659 , 2663 , 2671 , 2677 , 2683 , 2687
, 2689 , 2693 , 2699 , 2707 , 2711 , 2713 , 2719 , 2729 , 2731 , 2741
, 2749 , 2753 , 2767 , 2777 , 2789 , 2791 , 2797 , 2801 , 2803 , 2819
, 2833 , 2837 , 2843 , 2851 , 2857 , 2861 , 2879 , 2887 , 2897 , 2903
]
{-# INLINE divides #-}
divides :: Integer -> Integer -> Bool
divides i n = n `mod` i == 0
|