File: Prime.hs

package info (click to toggle)
haskell-cryptonite 0.30-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,372 kB
  • sloc: ansic: 22,009; haskell: 18,423; makefile: 8
file content (235 lines) | stat: -rw-r--r-- 9,982 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
-- |
-- Module      : Crypto.Number.Prime
-- License     : BSD-style
-- Maintainer  : Vincent Hanquez <vincent@snarc.org>
-- Stability   : experimental
-- Portability : Good

{-# LANGUAGE BangPatterns #-}
module Crypto.Number.Prime
    (
      generatePrime
    , generateSafePrime
    , isProbablyPrime
    , findPrimeFrom
    , findPrimeFromWith
    , primalityTestMillerRabin
    , primalityTestNaive
    , primalityTestFermat
    , isCoprime
    ) where

import Crypto.Number.Compat
import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde)
import Crypto.Number.ModArithmetic (expSafe)
import Crypto.Random.Types
import Crypto.Random.Probabilistic
import Crypto.Error

import Data.Bits

-- | Returns if the number is probably prime.
-- First a list of small primes are implicitely tested for divisibility,
-- then a fermat primality test is used with arbitrary numbers and
-- then the Miller Rabin algorithm is used with an accuracy of 30 recursions.
isProbablyPrime :: Integer -> Bool
isProbablyPrime !n
    | any (\p -> p `divides` n) (filter (< n) firstPrimes) = False
    | n >= 2 && n <= 2903                                  = True
    | primalityTestFermat 50 (n `div` 2) n                 = primalityTestMillerRabin 30 n
    | otherwise                                            = False

-- | Generate a prime number of the required bitsize (i.e. in the range
-- [2^(b-1)+2^(b-2), 2^b)).
--
-- May throw a 'CryptoError_PrimeSizeInvalid' if the requested size is less
-- than 5 bits, as the smallest prime meeting these conditions is 29.
-- This function requires that the two highest bits are set, so that when
-- multiplied with another prime to create a key, it is guaranteed to be of
-- the proper size.
generatePrime :: MonadRandom m => Int -> m Integer
generatePrime bits = do
    if bits < 5 then
        throwCryptoError $ CryptoFailed $ CryptoError_PrimeSizeInvalid
    else do
        sp <- generateParams bits (Just SetTwoHighest) True
        let prime = findPrimeFrom sp
        if prime < 1 `shiftL` bits then
            return $ prime
        else generatePrime bits

-- | Generate a prime number of the form 2p+1 where p is also prime.
-- it is also knowed as a Sophie Germaine prime or safe prime.
--
-- The number of safe prime is significantly smaller to the number of prime,
-- as such it shouldn't be used if this number is supposed to be kept safe.
--
-- May throw a 'CryptoError_PrimeSizeInvalid' if the requested size is less than
-- 6 bits, as the smallest safe prime with the two highest bits set is 59.
generateSafePrime :: MonadRandom m => Int -> m Integer
generateSafePrime bits = do
    if bits < 6 then
        throwCryptoError $ CryptoFailed $ CryptoError_PrimeSizeInvalid
    else do
        sp <- generateParams bits (Just SetTwoHighest) True
        let p = findPrimeFromWith (\i -> isProbablyPrime (2*i+1)) (sp `div` 2)
        let val = 2 * p + 1
        if val < 1 `shiftL` bits then
            return $ val
        else generateSafePrime bits

-- | Find a prime from a starting point where the property hold.
findPrimeFromWith :: (Integer -> Bool) -> Integer -> Integer
findPrimeFromWith prop !n
    | even n        = findPrimeFromWith prop (n+1)
    | otherwise     =
        if not (isProbablyPrime n)
            then findPrimeFromWith prop (n+2)
            else
                if prop n
                    then n
                    else findPrimeFromWith prop (n+2)

-- | Find a prime from a starting point with no specific property.
findPrimeFrom :: Integer -> Integer
findPrimeFrom n =
    case gmpNextPrime n of
        GmpSupported p -> p
        GmpUnsupported -> findPrimeFromWith (\_ -> True) n

-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: Int -> Integer -> Bool
primalityTestMillerRabin tries !n =
    case gmpTestPrimeMillerRabin tries n of
        GmpSupported b -> b
        GmpUnsupported -> probabilistic run
  where
    run
        | n <= 3     = error "Miller-Rabin requires tested value to be > 3"
        | even n     = return False
        | tries <= 0 = error "Miller-Rabin tries need to be > 0"
        | otherwise  = loop <$> generateTries tries

    !nm1 = n-1
    !nm2 = n-2

    (!s,!d) = (factorise 0 nm1)

    generateTries 0 = return []
    generateTries t = do
        v  <- generateBetween 2 nm2
        vs <- generateTries (t-1)
        return (v:vs)

    -- factorise n-1 into the form 2^s*d
    factorise :: Integer -> Integer -> (Integer, Integer)
    factorise !si !vi
        | vi `testBit` 0 = (si, vi)
        | otherwise     = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continuously, but just once.
    expmod = expSafe

    -- when iteration reach zero, we have a probable prime
    loop []     = True
    loop (w:ws) = let x = expmod w d n
                   in if x == (1 :: Integer) || x == nm1
                          then loop ws
                          else loop' ws ((x*x) `mod` n) 1

    -- loop from 1 to s-1. if we reach the end then it's composite
    loop' ws !x2 !r
        | r == s    = False
        | x2 == 1   = False
        | x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
        | otherwise = loop ws

{-
    n < z -> witness to test
              1373653 [2,3]
              9080191 [31,73]
              4759123141 [2,7,61]
              2152302898747 [2,3,5,7,11]
              3474749660383 [2,3,5,7,11,13]
              341550071728321 [2,3,5,7,11,13,17]
-}

-- | Probabilitic Test using Fermat primility test.
-- Beware of Carmichael numbers that are Fermat liars, i.e. this test
-- is useless for them. always combines with some other test.
primalityTestFermat :: Int -- ^ number of iterations of the algorithm
                    -> Integer -- ^ starting a
                    -> Integer -- ^ number to test for primality
                    -> Bool
primalityTestFermat n a p = and $ map expTest [a..(a+fromIntegral n)]
    where !pm1 = p-1
          expTest i = expSafe i pm1 p == 1

-- | Test naively is integer is prime.
-- while naive, we skip even number and stop iteration at i > sqrt(n)
primalityTestNaive :: Integer -> Bool
primalityTestNaive n
    | n <= 1    = False
    | n == 2    = True
    | even n    = False
    | otherwise = search 3
        where !ubound = snd $ sqrti n
              search !i
                  | i > ubound    = True
                  | i `divides` n = False
                  | otherwise     = search (i+2)

-- | Test is two integer are coprime to each other
isCoprime :: Integer -> Integer -> Bool
isCoprime m n = case gcde m n of (_,_,d) -> d == 1

-- | List of the first primes till 2903.
firstPrimes :: [Integer]
firstPrimes =
    [ 2    , 3    , 5    , 7    , 11   , 13   , 17   , 19   , 23   , 29
    , 31   , 37   , 41   , 43   , 47   , 53   , 59   , 61   , 67   , 71
    , 73   , 79   , 83   , 89   , 97   , 101  , 103  , 107  , 109  , 113
    , 127  , 131  , 137  , 139  , 149  , 151  , 157  , 163  , 167  , 173
    , 179  , 181  , 191  , 193  , 197  , 199  , 211  , 223  , 227  , 229
    , 233  , 239  , 241  , 251  , 257  , 263  , 269  , 271  , 277  , 281
    , 283  , 293  , 307  , 311  , 313  , 317  , 331  , 337  , 347  , 349
    , 353  , 359  , 367  , 373  , 379  , 383  , 389  , 397  , 401  , 409
    , 419  , 421  , 431  , 433  , 439  , 443  , 449  , 457  , 461  , 463
    , 467  , 479  , 487  , 491  , 499  , 503  , 509  , 521  , 523  , 541
    , 547  , 557  , 563  , 569  , 571  , 577  , 587  , 593  , 599  , 601
    , 607  , 613  , 617  , 619  , 631  , 641  , 643  , 647  , 653  , 659
    , 661  , 673  , 677  , 683  , 691  , 701  , 709  , 719  , 727  , 733
    , 739  , 743  , 751  , 757  , 761  , 769  , 773  , 787  , 797  , 809
    , 811  , 821  , 823  , 827  , 829  , 839  , 853  , 857  , 859  , 863
    , 877  , 881  , 883  , 887  , 907  , 911  , 919  , 929  , 937  , 941
    , 947  , 953  , 967  , 971  , 977  , 983  , 991  , 997  , 1009 , 1013
    , 1019 , 1021 , 1031 , 1033 , 1039 , 1049 , 1051 , 1061 , 1063 , 1069
    , 1087 , 1091 , 1093 , 1097 , 1103 , 1109 , 1117 , 1123 , 1129 , 1151
    , 1153 , 1163 , 1171 , 1181 , 1187 , 1193 , 1201 , 1213 , 1217 , 1223
    , 1229 , 1231 , 1237 , 1249 , 1259 , 1277 , 1279 , 1283 , 1289 , 1291
    , 1297 , 1301 , 1303 , 1307 , 1319 , 1321 , 1327 , 1361 , 1367 , 1373
    , 1381 , 1399 , 1409 , 1423 , 1427 , 1429 , 1433 , 1439 , 1447 , 1451
    , 1453 , 1459 , 1471 , 1481 , 1483 , 1487 , 1489 , 1493 , 1499 , 1511
    , 1523 , 1531 , 1543 , 1549 , 1553 , 1559 , 1567 , 1571 , 1579 , 1583
    , 1597 , 1601 , 1607 , 1609 , 1613 , 1619 , 1621 , 1627 , 1637 , 1657
    , 1663 , 1667 , 1669 , 1693 , 1697 , 1699 , 1709 , 1721 , 1723 , 1733
    , 1741 , 1747 , 1753 , 1759 , 1777 , 1783 , 1787 , 1789 , 1801 , 1811
    , 1823 , 1831 , 1847 , 1861 , 1867 , 1871 , 1873 , 1877 , 1879 , 1889
    , 1901 , 1907 , 1913 , 1931 , 1933 , 1949 , 1951 , 1973 , 1979 , 1987
    , 1993 , 1997 , 1999 , 2003 , 2011 , 2017 , 2027 , 2029 , 2039 , 2053
    , 2063 , 2069 , 2081 , 2083 , 2087 , 2089 , 2099 , 2111 , 2113 , 2129
    , 2131 , 2137 , 2141 , 2143 , 2153 , 2161 , 2179 , 2203 , 2207 , 2213
    , 2221 , 2237 , 2239 , 2243 , 2251 , 2267 , 2269 , 2273 , 2281 , 2287
    , 2293 , 2297 , 2309 , 2311 , 2333 , 2339 , 2341 , 2347 , 2351 , 2357
    , 2371 , 2377 , 2381 , 2383 , 2389 , 2393 , 2399 , 2411 , 2417 , 2423
    , 2437 , 2441 , 2447 , 2459 , 2467 , 2473 , 2477 , 2503 , 2521 , 2531
    , 2539 , 2543 , 2549 , 2551 , 2557 , 2579 , 2591 , 2593 , 2609 , 2617
    , 2621 , 2633 , 2647 , 2657 , 2659 , 2663 , 2671 , 2677 , 2683 , 2687
    , 2689 , 2693 , 2699 , 2707 , 2711 , 2713 , 2719 , 2729 , 2731 , 2741
    , 2749 , 2753 , 2767 , 2777 , 2789 , 2791 , 2797 , 2801 , 2803 , 2819
    , 2833 , 2837 , 2843 , 2851 , 2857 , 2861 , 2879 , 2887 , 2897 , 2903
    ]

{-# INLINE divides #-}
divides :: Integer -> Integer -> Bool
divides i n = n `mod` i == 0