1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
/*
* Copyright (c) 2012 Vincent Hanquez <vincent@snarc.org>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of his contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <cryptonite_cpu.h>
#include <aes/gf.h>
#include <aes/x86ni.h>
/* inplace GFMUL for xts mode */
void cryptonite_aes_generic_gf_mulx(block128 *a)
{
const uint64_t gf_mask = cpu_to_le64(0x8000000000000000ULL);
uint64_t r = ((a->q[1] & gf_mask) ? cpu_to_le64(0x87) : 0);
a->q[1] = cpu_to_le64((le64_to_cpu(a->q[1]) << 1) | (a->q[0] & gf_mask ? 1 : 0));
a->q[0] = cpu_to_le64(le64_to_cpu(a->q[0]) << 1) ^ r;
}
/*
* GF multiplication with Shoup's method and 4-bit table.
*
* We precompute the products of H with all 4-bit polynomials and store them in
* a 'table_4bit' array. To avoid unnecessary byte swapping, the 16 blocks are
* written to the table with qwords already converted to CPU order. Table
* indices use the reflected bit ordering, i.e. polynomials X^0, X^1, X^2, X^3
* map to bit positions 3, 2, 1, 0 respectively.
*
* To multiply an arbitrary block with H, the input block is decomposed in 4-bit
* segments. We get the final result after 32 table lookups and additions, one
* for each segment, interleaving multiplication by P(X)=X^4.
*/
/* convert block128 qwords between BE and CPU order */
static inline void block128_cpu_swap_be(block128 *a, const block128 *b)
{
a->q[1] = cpu_to_be64(b->q[1]);
a->q[0] = cpu_to_be64(b->q[0]);
}
/* multiplication by P(X)=X, assuming qwords already in CPU order */
static inline void cpu_gf_mulx(block128 *a, const block128 *b)
{
uint64_t v0 = b->q[0];
uint64_t v1 = b->q[1];
a->q[1] = v1 >> 1 | v0 << 63;
a->q[0] = v0 >> 1 ^ ((0-(v1 & 1)) & 0xe100000000000000ULL);
}
static const uint64_t r4_0[] =
{ 0x0000000000000000ULL, 0x1c20000000000000ULL
, 0x3840000000000000ULL, 0x2460000000000000ULL
, 0x7080000000000000ULL, 0x6ca0000000000000ULL
, 0x48c0000000000000ULL, 0x54e0000000000000ULL
, 0xe100000000000000ULL, 0xfd20000000000000ULL
, 0xd940000000000000ULL, 0xc560000000000000ULL
, 0x9180000000000000ULL, 0x8da0000000000000ULL
, 0xa9c0000000000000ULL, 0xb5e0000000000000ULL
};
/* multiplication by P(X)=X^4, assuming qwords already in CPU order */
static inline void cpu_gf_mulx4(block128 *a, const block128 *b)
{
uint64_t v0 = b->q[0];
uint64_t v1 = b->q[1];
a->q[1] = v1 >> 4 | v0 << 60;
a->q[0] = v0 >> 4 ^ r4_0[v1 & 0xf];
}
/* initialize the 4-bit table given H */
void cryptonite_aes_generic_hinit(table_4bit htable, const block128 *h)
{
block128 v, *p;
int i, j;
/* multiplication by 0 is 0 */
block128_zero(&htable[0]);
/* at index 8=2^3 we have H.X^0 = H */
i = 8;
block128_cpu_swap_be(&htable[i], h); /* in CPU order */
p = &htable[i];
/* for other powers of 2, repeat multiplication by P(X)=X */
for (i = 4; i > 0; i >>= 1)
{
cpu_gf_mulx(&htable[i], p);
p = &htable[i];
}
/* remaining elements are linear combinations */
for (i = 2; i < 16; i <<= 1) {
p = &htable[i];
v = *p;
for (j = 1; j < i; j++) {
p[j] = v;
block128_xor_aligned(&p[j], &htable[j]);
}
}
}
/* multiply a block with H */
void cryptonite_aes_generic_gf_mul(block128 *a, const table_4bit htable)
{
block128 b;
int i;
block128_zero(&b);
for (i = 15; i >= 0; i--)
{
uint8_t v = a->b[i];
block128_xor_aligned(&b, &htable[v & 0xf]); /* high bits (reflected) */
cpu_gf_mulx4(&b, &b);
block128_xor_aligned(&b, &htable[v >> 4]); /* low bits (reflected) */
if (i > 0)
cpu_gf_mulx4(&b, &b);
else
block128_cpu_swap_be(a, &b); /* restore BE order when done */
}
}
|