1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* Copyright (C) 2012 Vincent Hanquez <vincent@snarc.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <string.h>
#include "cryptonite_bitfn.h"
#include "cryptonite_align.h"
#include "cryptonite_sha3.h"
#define KECCAK_NB_ROUNDS 24
/* rounds constants */
static const uint64_t keccak_rndc[24] =
{
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL,
};
/* triangular numbers constants */
static const int keccak_rotc[24] =
{ 1,3,6,10,15,21,28,36,45,55,2,14,27,41,56,8,25,43,62,18,39,61,20,44 };
static const int keccak_piln[24] =
{ 10,7,11,17,18,3,5,16,8,21,24,4,15,23,19,13,12,2,20,14,22,9,6,1 };
static inline void sha3_do_chunk(uint64_t state[25], uint64_t buf[], int bufsz)
{
int i, j, r;
uint64_t tmp, bc[5];
/* merge buf with state */
for (i = 0; i < bufsz; i++)
state[i] ^= le64_to_cpu(buf[i]);
/* run keccak rounds */
for (r = 0; r < KECCAK_NB_ROUNDS; r++) {
/* compute the parity of each columns */
for (i = 0; i < 5; i++)
bc[i] = state[i] ^ state[i+5] ^ state[i+10] ^ state[i+15] ^ state[i+20];
for (i = 0; i < 5; i++) {
tmp = bc[(i + 4) % 5] ^ rol64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
state[j + i] ^= tmp;
}
/* rho pi */
tmp = state[1];
for (i = 0; i < 24; i++) {
j = keccak_piln[i];
bc[0] = state[j];
state[j] = rol64(tmp, keccak_rotc[i]);
tmp = bc[0];
}
/* bitwise combine along rows using a = a xor (not b and c) */
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = state[j + i];
#define andn(b,c) (~(b) & (c))
state[j + 0] ^= andn(bc[1], bc[2]);
state[j + 1] ^= andn(bc[2], bc[3]);
state[j + 2] ^= andn(bc[3], bc[4]);
state[j + 3] ^= andn(bc[4], bc[0]);
state[j + 4] ^= andn(bc[0], bc[1]);
#undef andn
}
/* xor the round constant */
state[0] ^= keccak_rndc[r];
}
}
/*
* Initialize a SHA-3 / SHAKE / cSHAKE context: hashlen is the security level
* (and half the capacity) in bits.
*
* In case of cSHAKE, the message prefix with encoded N and S must be added with
* cryptonite_sha3_update.
*/
void cryptonite_sha3_init(struct sha3_ctx *ctx, uint32_t hashlen)
{
/* assert(hashlen >= SHA3_BITSIZE_MIN && hashlen <= SHA3_BITSIZE_MAX) */
int bufsz = SHA3_BUF_SIZE(hashlen);
memset(ctx, 0, sizeof(*ctx) + bufsz);
ctx->bufsz = bufsz;
}
/* Update a SHA-3 / SHAKE / cSHAKE context */
void cryptonite_sha3_update(struct sha3_ctx *ctx, const uint8_t *data, uint32_t len)
{
uint32_t to_fill;
to_fill = ctx->bufsz - ctx->bufindex;
if (ctx->bufindex == ctx->bufsz) {
sha3_do_chunk(ctx->state, (uint64_t *) ctx->buf, ctx->bufsz / 8);
ctx->bufindex = 0;
}
/* process partial buffer if there's enough data to make a block */
if (ctx->bufindex && len >= to_fill) {
memcpy(ctx->buf + ctx->bufindex, data, to_fill);
sha3_do_chunk(ctx->state, (uint64_t *) ctx->buf, ctx->bufsz / 8);
len -= to_fill;
data += to_fill;
ctx->bufindex = 0;
}
if (need_alignment(data, 8)) {
uint64_t tramp[SHA3_BUF_SIZE_MAX/8];
ASSERT_ALIGNMENT(tramp, 8);
for (; len >= ctx->bufsz; len -= ctx->bufsz, data += ctx->bufsz) {
memcpy(tramp, data, ctx->bufsz);
sha3_do_chunk(ctx->state, tramp, ctx->bufsz / 8);
}
} else {
/* process as much ctx->bufsz-block */
for (; len >= ctx->bufsz; len -= ctx->bufsz, data += ctx->bufsz)
sha3_do_chunk(ctx->state, (uint64_t *) data, ctx->bufsz / 8);
}
/* append data into buf */
if (len) {
memcpy(ctx->buf + ctx->bufindex, data, len);
ctx->bufindex += len;
}
}
void cryptonite_sha3_finalize_with_pad_byte(struct sha3_ctx *ctx, uint8_t pad_byte)
{
/* process full buffer if needed */
if (ctx->bufindex == ctx->bufsz) {
sha3_do_chunk(ctx->state, (uint64_t *) ctx->buf, ctx->bufsz / 8);
ctx->bufindex = 0;
}
/* add the 10*1 padding */
ctx->buf[ctx->bufindex++] = pad_byte;
memset(ctx->buf + ctx->bufindex, 0, ctx->bufsz - ctx->bufindex);
ctx->buf[ctx->bufsz - 1] |= 0x80;
/* process */
sha3_do_chunk(ctx->state, (uint64_t *) ctx->buf, ctx->bufsz / 8);
ctx->bufindex = 0;
}
/*
* Extract some bytes from a finalized SHA-3 / SHAKE / cSHAKE context.
* May be called multiple times.
*/
void cryptonite_sha3_output(struct sha3_ctx *ctx, uint8_t *out, uint32_t len)
{
uint64_t w[25];
uint8_t *wptr = (uint8_t *) w;
uint32_t still_avail;
still_avail = ctx->bufsz - ctx->bufindex;
if (ctx->bufindex == ctx->bufsz) {
/* squeeze the sponge again, without any input */
sha3_do_chunk(ctx->state, NULL, 0);
ctx->bufindex = 0;
}
/* use bytes already available if this block is fully consumed */
if (ctx->bufindex && len >= still_avail) {
cpu_to_le64_array(w, ctx->state, 25);
memcpy(out, wptr + ctx->bufindex, still_avail);
sha3_do_chunk(ctx->state, NULL, 0);
len -= still_avail;
out += still_avail;
ctx->bufindex = 0;
}
/* output as much ctx->bufsz-block */
for (; len > ctx->bufsz; len -= ctx->bufsz, out += ctx->bufsz) {
cpu_to_le64_array(w, ctx->state, 25);
memcpy(out, w, ctx->bufsz);
sha3_do_chunk(ctx->state, NULL, 0);
}
/* output from partial buffer */
if (len) {
cpu_to_le64_array(w, ctx->state, 25);
memcpy(out, wptr + ctx->bufindex, len);
ctx->bufindex += len;
}
}
/* Finalize a SHA-3 context and return the digest value */
void cryptonite_sha3_finalize(struct sha3_ctx *ctx, uint32_t hashlen, uint8_t *out)
{
cryptonite_sha3_finalize_with_pad_byte(ctx, 0x06);
cryptonite_sha3_output(ctx, out, hashlen / 8);
}
/* Finalize a SHAKE context. Output is read using cryptonite_sha3_output. */
void cryptonite_sha3_finalize_shake(struct sha3_ctx *ctx)
{
cryptonite_sha3_finalize_with_pad_byte(ctx, 0x1F);
}
/* Finalize a cSHAKE context. Output is read using cryptonite_sha3_output. */
void cryptonite_sha3_finalize_cshake(struct sha3_ctx *ctx)
{
cryptonite_sha3_finalize_with_pad_byte(ctx, 0x04);
}
void cryptonite_keccak_init(struct sha3_ctx *ctx, uint32_t hashlen)
{
cryptonite_sha3_init(ctx, hashlen);
}
void cryptonite_keccak_update(struct sha3_ctx *ctx, uint8_t *data, uint32_t len)
{
cryptonite_sha3_update(ctx, data, len);
}
void cryptonite_keccak_finalize(struct sha3_ctx *ctx, uint32_t hashlen, uint8_t *out)
{
cryptonite_sha3_finalize_with_pad_byte(ctx, 1);
cryptonite_sha3_output(ctx, out, hashlen / 8);
}
|