File: ed25519-cryptonite-exts.h

package info (click to toggle)
haskell-cryptonite 0.30-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,372 kB
  • sloc: ansic: 22,009; haskell: 18,423; makefile: 8
file content (246 lines) | stat: -rw-r--r-- 6,936 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
    Public domain by Olivier Chéron <olivier.cheron@gmail.com>

    Arithmetic extensions to Ed25519-donna
*/


/*
    Scalar functions
*/

void
ED25519_FN(ed25519_scalar_encode) (unsigned char out[32], const bignum256modm in) {
    contract256_modm(out, in);
}

void
ED25519_FN(ed25519_scalar_decode_long) (bignum256modm out, const unsigned char *in, size_t len) {
    expand256_modm(out, in, len);
}

int
ED25519_FN(ed25519_scalar_eq) (const bignum256modm a, const bignum256modm b) {
    bignum256modm_element_t e = 0;

    for (int i = 0; i < bignum256modm_limb_size; i++) {
        e |= a[i] ^ b[i];
    }

    return (int) (1 & ((e - 1) >> bignum256modm_bits_per_limb));
}

void
ED25519_FN(ed25519_scalar_add) (bignum256modm r, const bignum256modm x, const bignum256modm y) {
    add256_modm(r, x, y);
}

void
ED25519_FN(ed25519_scalar_mul) (bignum256modm r, const bignum256modm x, const bignum256modm y) {
    mul256_modm(r, x, y);
}


/*
    Point functions
*/

void
ED25519_FN(ed25519_point_encode) (unsigned char r[32], const ge25519 *p) {
    ge25519_pack(r, p);
}

int
ED25519_FN(ed25519_point_decode_vartime) (ge25519 *r, const unsigned char p[32]) {
    unsigned char p_neg[32];

    // invert parity bit of X coordinate so the point is negated twice
    // (once here, once in ge25519_unpack_negative_vartime)
    for (int i = 0; i < 31; i++) {
        p_neg[i] = p[i];
    }
    p_neg[31] = p[31] ^ 0x80;

    return ge25519_unpack_negative_vartime(r, p_neg);
}

int
ED25519_FN(ed25519_point_eq) (const ge25519 *p, const ge25519 *q) {
    bignum25519 a, b;
    unsigned char contract_a[32], contract_b[32];
    int eq;

    // pX * qZ = qX * pZ
    curve25519_mul(a, p->x, q->z);
    curve25519_contract(contract_a, a);
    curve25519_mul(b, q->x, p->z);
    curve25519_contract(contract_b, b);
    eq = ed25519_verify(contract_a, contract_b, 32);

    // pY * qZ = qY * pZ
    curve25519_mul(a, p->y, q->z);
    curve25519_contract(contract_a, a);
    curve25519_mul(b, q->y, p->z);
    curve25519_contract(contract_b, b);
    eq &= ed25519_verify(contract_a, contract_b, 32);

    return eq;
}

static int
ED25519_FN(ed25519_point_is_identity) (const ge25519 *p) {
    static const unsigned char zero[32] = {0};
    unsigned char check[32];
    bignum25519 d;
    int eq;

    // pX = 0
    curve25519_contract(check, p->x);
    eq = ed25519_verify(check, zero, 32);

    // pY - pZ = 0
    curve25519_sub_reduce(d, p->y, p->z);
    curve25519_contract(check, d);
    eq &= ed25519_verify(check, zero, 32);

    return eq;
}

void
ED25519_FN(ed25519_point_negate) (ge25519 *r, const ge25519 *p) {
    curve25519_neg(r->x, p->x);
    curve25519_copy(r->y, p->y);
    curve25519_copy(r->z, p->z);
    curve25519_neg(r->t, p->t);
}

void
ED25519_FN(ed25519_point_add) (ge25519 *r, const ge25519 *p, const ge25519 *q) {
    ge25519_add(r, p, q);
}

void
ED25519_FN(ed25519_point_double) (ge25519 *r, const ge25519 *p) {
    ge25519_double(r, p);
}

void
ED25519_FN(ed25519_point_mul_by_cofactor) (ge25519 *r, const ge25519 *p) {
    ge25519_double_partial(r, p);
    ge25519_double_partial(r, r);
    ge25519_double(r, r);
}

void
ED25519_FN(ed25519_point_base_scalarmul) (ge25519 *r, const bignum256modm s) {
    ge25519_scalarmult_base_niels(r, ge25519_niels_base_multiples, s);
}

#if defined(ED25519_64BIT)
typedef uint64_t ed25519_move_cond_word;
#else
typedef uint32_t ed25519_move_cond_word;
#endif

/* out = (flag) ? in : out */
DONNA_INLINE static void
ed25519_move_cond_pniels(ge25519_pniels *out, const ge25519_pniels *in, uint32_t flag) {
    const int word_count = sizeof(ge25519_pniels) / sizeof(ed25519_move_cond_word);
    const ed25519_move_cond_word nb = (ed25519_move_cond_word) flag - 1, b = ~nb;

    ed25519_move_cond_word *outw = (ed25519_move_cond_word *) out;
    const ed25519_move_cond_word *inw  = (const ed25519_move_cond_word *) in;

    // ge25519_pniels has 4 coordinates, so word_count is divisible by 4
    for (int i = 0; i < word_count; i += 4) {
        outw[i + 0] = (outw[i + 0] & nb) | (inw[i + 0] & b);
        outw[i + 1] = (outw[i + 1] & nb) | (inw[i + 1] & b);
        outw[i + 2] = (outw[i + 2] & nb) | (inw[i + 2] & b);
        outw[i + 3] = (outw[i + 3] & nb) | (inw[i + 3] & b);
    }
}

static void
ed25519_point_scalarmul_w_choose_pniels(ge25519_pniels *t, const ge25519_pniels table[15], uint32_t pos) {
    // initialize t to identity, i.e. (1, 1, 1, 0)
    memset(t, 0, sizeof(ge25519_pniels));
    t->ysubx[0] = 1;
    t->xaddy[0] = 1;
    t->z[0] = 1;

    // move one entry from table matching requested position,
    // scanning all table to avoid cache-timing attack
    //
    // when pos == 0, no entry matches and this returns
    // identity as expected
    for (uint32_t i = 1; i < 16; i++) {
        uint32_t flag = ((i ^ pos) - 1) >> 31;
        ed25519_move_cond_pniels(t, table + i - 1, flag);
    }
}

void
ED25519_FN(ed25519_point_scalarmul) (ge25519 *r, const ge25519 *p, const bignum256modm s) {
    ge25519_pniels mult[15];
    ge25519_pniels pn;
    ge25519_p1p1 t;
    unsigned char ss[32];

    // transform scalar as little-endian number
    contract256_modm(ss, s);

    // initialize r to identity, i.e. ge25519 (0, 1, 1, 0)
    memset(r, 0, sizeof(ge25519));
    r->y[0] = 1;
    r->z[0] = 1;

    // precompute multiples of P: 1.P, 2.P, ..., 15.P
    ge25519_full_to_pniels(&mult[0], p);
    for (int i = 1; i < 15; i++) {
        ge25519_pnielsadd(&mult[i], p, &mult[i-1]);
    }

    // 4-bit fixed window, still 256 doublings but 64 additions
    for (int i = 31; i >= 0; i--) {
        // higher bits in ss[i]
        ed25519_point_scalarmul_w_choose_pniels(&pn, mult, ss[i] >> 4);
        ge25519_pnielsadd_p1p1(&t, r, &pn, 0);
        ge25519_p1p1_to_partial(r, &t);

        ge25519_double_partial(r, r);
        ge25519_double_partial(r, r);
        ge25519_double_partial(r, r);
        ge25519_double(r, r);

        // lower bits in ss[i]
        ed25519_point_scalarmul_w_choose_pniels(&pn, mult, ss[i] & 0x0F);
        ge25519_pnielsadd_p1p1(&t, r, &pn, 0);
        if (i > 0) {
            ge25519_p1p1_to_partial(r, &t);

            ge25519_double_partial(r, r);
            ge25519_double_partial(r, r);
            ge25519_double_partial(r, r);
            ge25519_double(r, r);
        } else {
            ge25519_p1p1_to_full(r, &t);
        }
    }
}

void
ED25519_FN(ed25519_base_double_scalarmul_vartime) (ge25519 *r, const bignum256modm s1, const ge25519 *p2, const bignum256modm s2) {
    // computes [s1]basepoint + [s2]p2
    ge25519_double_scalarmult_vartime(r, p2, s2, s1);
}

int
ED25519_FN(ed25519_point_has_prime_order) (const ge25519 *p) {
    static const bignum256modm sc_zero = {0};
    ge25519 q;

    // computes Q = m.P, vartime allowed because m is not secret
    ED25519_FN(ed25519_base_double_scalarmul_vartime) (&q, sc_zero, p, modm_m);

    return ED25519_FN(ed25519_point_is_identity) (&q);
}