1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*
Public domain by Olivier Chéron <olivier.cheron@gmail.com>
Arithmetic extensions to Ed25519-donna
*/
/*
Scalar functions
*/
void
ED25519_FN(ed25519_scalar_encode) (unsigned char out[32], const bignum256modm in) {
contract256_modm(out, in);
}
void
ED25519_FN(ed25519_scalar_decode_long) (bignum256modm out, const unsigned char *in, size_t len) {
expand256_modm(out, in, len);
}
int
ED25519_FN(ed25519_scalar_eq) (const bignum256modm a, const bignum256modm b) {
bignum256modm_element_t e = 0;
for (int i = 0; i < bignum256modm_limb_size; i++) {
e |= a[i] ^ b[i];
}
return (int) (1 & ((e - 1) >> bignum256modm_bits_per_limb));
}
void
ED25519_FN(ed25519_scalar_add) (bignum256modm r, const bignum256modm x, const bignum256modm y) {
add256_modm(r, x, y);
}
void
ED25519_FN(ed25519_scalar_mul) (bignum256modm r, const bignum256modm x, const bignum256modm y) {
mul256_modm(r, x, y);
}
/*
Point functions
*/
void
ED25519_FN(ed25519_point_encode) (unsigned char r[32], const ge25519 *p) {
ge25519_pack(r, p);
}
int
ED25519_FN(ed25519_point_decode_vartime) (ge25519 *r, const unsigned char p[32]) {
unsigned char p_neg[32];
// invert parity bit of X coordinate so the point is negated twice
// (once here, once in ge25519_unpack_negative_vartime)
for (int i = 0; i < 31; i++) {
p_neg[i] = p[i];
}
p_neg[31] = p[31] ^ 0x80;
return ge25519_unpack_negative_vartime(r, p_neg);
}
int
ED25519_FN(ed25519_point_eq) (const ge25519 *p, const ge25519 *q) {
bignum25519 a, b;
unsigned char contract_a[32], contract_b[32];
int eq;
// pX * qZ = qX * pZ
curve25519_mul(a, p->x, q->z);
curve25519_contract(contract_a, a);
curve25519_mul(b, q->x, p->z);
curve25519_contract(contract_b, b);
eq = ed25519_verify(contract_a, contract_b, 32);
// pY * qZ = qY * pZ
curve25519_mul(a, p->y, q->z);
curve25519_contract(contract_a, a);
curve25519_mul(b, q->y, p->z);
curve25519_contract(contract_b, b);
eq &= ed25519_verify(contract_a, contract_b, 32);
return eq;
}
static int
ED25519_FN(ed25519_point_is_identity) (const ge25519 *p) {
static const unsigned char zero[32] = {0};
unsigned char check[32];
bignum25519 d;
int eq;
// pX = 0
curve25519_contract(check, p->x);
eq = ed25519_verify(check, zero, 32);
// pY - pZ = 0
curve25519_sub_reduce(d, p->y, p->z);
curve25519_contract(check, d);
eq &= ed25519_verify(check, zero, 32);
return eq;
}
void
ED25519_FN(ed25519_point_negate) (ge25519 *r, const ge25519 *p) {
curve25519_neg(r->x, p->x);
curve25519_copy(r->y, p->y);
curve25519_copy(r->z, p->z);
curve25519_neg(r->t, p->t);
}
void
ED25519_FN(ed25519_point_add) (ge25519 *r, const ge25519 *p, const ge25519 *q) {
ge25519_add(r, p, q);
}
void
ED25519_FN(ed25519_point_double) (ge25519 *r, const ge25519 *p) {
ge25519_double(r, p);
}
void
ED25519_FN(ed25519_point_mul_by_cofactor) (ge25519 *r, const ge25519 *p) {
ge25519_double_partial(r, p);
ge25519_double_partial(r, r);
ge25519_double(r, r);
}
void
ED25519_FN(ed25519_point_base_scalarmul) (ge25519 *r, const bignum256modm s) {
ge25519_scalarmult_base_niels(r, ge25519_niels_base_multiples, s);
}
#if defined(ED25519_64BIT)
typedef uint64_t ed25519_move_cond_word;
#else
typedef uint32_t ed25519_move_cond_word;
#endif
/* out = (flag) ? in : out */
DONNA_INLINE static void
ed25519_move_cond_pniels(ge25519_pniels *out, const ge25519_pniels *in, uint32_t flag) {
const int word_count = sizeof(ge25519_pniels) / sizeof(ed25519_move_cond_word);
const ed25519_move_cond_word nb = (ed25519_move_cond_word) flag - 1, b = ~nb;
ed25519_move_cond_word *outw = (ed25519_move_cond_word *) out;
const ed25519_move_cond_word *inw = (const ed25519_move_cond_word *) in;
// ge25519_pniels has 4 coordinates, so word_count is divisible by 4
for (int i = 0; i < word_count; i += 4) {
outw[i + 0] = (outw[i + 0] & nb) | (inw[i + 0] & b);
outw[i + 1] = (outw[i + 1] & nb) | (inw[i + 1] & b);
outw[i + 2] = (outw[i + 2] & nb) | (inw[i + 2] & b);
outw[i + 3] = (outw[i + 3] & nb) | (inw[i + 3] & b);
}
}
static void
ed25519_point_scalarmul_w_choose_pniels(ge25519_pniels *t, const ge25519_pniels table[15], uint32_t pos) {
// initialize t to identity, i.e. (1, 1, 1, 0)
memset(t, 0, sizeof(ge25519_pniels));
t->ysubx[0] = 1;
t->xaddy[0] = 1;
t->z[0] = 1;
// move one entry from table matching requested position,
// scanning all table to avoid cache-timing attack
//
// when pos == 0, no entry matches and this returns
// identity as expected
for (uint32_t i = 1; i < 16; i++) {
uint32_t flag = ((i ^ pos) - 1) >> 31;
ed25519_move_cond_pniels(t, table + i - 1, flag);
}
}
void
ED25519_FN(ed25519_point_scalarmul) (ge25519 *r, const ge25519 *p, const bignum256modm s) {
ge25519_pniels mult[15];
ge25519_pniels pn;
ge25519_p1p1 t;
unsigned char ss[32];
// transform scalar as little-endian number
contract256_modm(ss, s);
// initialize r to identity, i.e. ge25519 (0, 1, 1, 0)
memset(r, 0, sizeof(ge25519));
r->y[0] = 1;
r->z[0] = 1;
// precompute multiples of P: 1.P, 2.P, ..., 15.P
ge25519_full_to_pniels(&mult[0], p);
for (int i = 1; i < 15; i++) {
ge25519_pnielsadd(&mult[i], p, &mult[i-1]);
}
// 4-bit fixed window, still 256 doublings but 64 additions
for (int i = 31; i >= 0; i--) {
// higher bits in ss[i]
ed25519_point_scalarmul_w_choose_pniels(&pn, mult, ss[i] >> 4);
ge25519_pnielsadd_p1p1(&t, r, &pn, 0);
ge25519_p1p1_to_partial(r, &t);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double(r, r);
// lower bits in ss[i]
ed25519_point_scalarmul_w_choose_pniels(&pn, mult, ss[i] & 0x0F);
ge25519_pnielsadd_p1p1(&t, r, &pn, 0);
if (i > 0) {
ge25519_p1p1_to_partial(r, &t);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double(r, r);
} else {
ge25519_p1p1_to_full(r, &t);
}
}
}
void
ED25519_FN(ed25519_base_double_scalarmul_vartime) (ge25519 *r, const bignum256modm s1, const ge25519 *p2, const bignum256modm s2) {
// computes [s1]basepoint + [s2]p2
ge25519_double_scalarmult_vartime(r, p2, s2, s1);
}
int
ED25519_FN(ed25519_point_has_prime_order) (const ge25519 *p) {
static const bignum256modm sc_zero = {0};
ge25519 q;
// computes Q = m.P, vartime allowed because m is not secret
ED25519_FN(ed25519_base_double_scalarmul_vartime) (&q, sc_zero, p, modm_m);
return ED25519_FN(ed25519_point_is_identity) (&q);
}
|