1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This is an implementation of the P256 elliptic curve group. It's written to
// be portable and still constant-time.
//
// WARNING: Implementing these functions in a constant-time manner is far from
// obvious. Be careful when touching this code.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "p256/p256.h"
const cryptonite_p256_int cryptonite_SECP256r1_n = // curve order
{{P256_LITERAL(0xfc632551, 0xf3b9cac2), P256_LITERAL(0xa7179e84, 0xbce6faad),
P256_LITERAL(-1, -1), P256_LITERAL(0, -1)}};
const cryptonite_p256_int cryptonite_SECP256r1_p = // curve field size
{{P256_LITERAL(-1, -1), P256_LITERAL(-1, 0),
P256_LITERAL(0, 0), P256_LITERAL(1, -1) }};
const cryptonite_p256_int cryptonite_SECP256r1_b = // curve b
{{P256_LITERAL(0x27d2604b, 0x3bce3c3e), P256_LITERAL(0xcc53b0f6, 0x651d06b0),
P256_LITERAL(0x769886bc, 0xb3ebbd55), P256_LITERAL(0xaa3a93e7, 0x5ac635d8)}};
void cryptonite_p256_init(cryptonite_p256_int* a) {
memset(a, 0, sizeof(*a));
}
void cryptonite_p256_clear(cryptonite_p256_int* a) { cryptonite_p256_init(a); }
int cryptonite_p256_get_bit(const cryptonite_p256_int* scalar, int bit) {
return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT)
>> (bit & (P256_BITSPERDIGIT - 1))) & 1;
}
int cryptonite_p256_is_zero(const cryptonite_p256_int* a) {
cryptonite_p256_digit result = 0;
int i = 0;
for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i);
return result == 0;
}
// top, c[] += a[] * b
// Returns new top
static cryptonite_p256_digit mulAdd(const cryptonite_p256_int* a,
cryptonite_p256_digit b,
cryptonite_p256_digit top,
cryptonite_p256_digit* c) {
int i;
cryptonite_p256_ddigit carry = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += *c;
carry += (cryptonite_p256_ddigit)P256_DIGIT(a, i) * b;
*c++ = (cryptonite_p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return top + (cryptonite_p256_digit)carry;
}
// top, c[] -= top_a, a[]
static cryptonite_p256_digit subTop(cryptonite_p256_digit top_a,
const cryptonite_p256_digit* a,
cryptonite_p256_digit top_c,
cryptonite_p256_digit* c) {
int i;
cryptonite_p256_sddigit borrow = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += *c;
borrow -= *a++;
*c++ = (cryptonite_p256_digit)borrow;
borrow >>= P256_BITSPERDIGIT;
}
borrow += top_c;
borrow -= top_a;
top_c = (cryptonite_p256_digit)borrow;
assert((borrow >> P256_BITSPERDIGIT) == 0);
return top_c;
}
// top, c[] -= MOD[] & mask (0 or -1)
// returns new top.
static cryptonite_p256_digit subM(const cryptonite_p256_int* MOD,
cryptonite_p256_digit top,
cryptonite_p256_digit* c,
cryptonite_p256_digit mask) {
int i;
cryptonite_p256_sddigit borrow = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += *c;
borrow -= P256_DIGIT(MOD, i) & mask;
*c++ = (cryptonite_p256_digit)borrow;
borrow >>= P256_BITSPERDIGIT;
}
return top + (cryptonite_p256_digit)borrow;
}
// top, c[] += MOD[] & mask (0 or -1)
// returns new top.
static cryptonite_p256_digit addM(const cryptonite_p256_int* MOD,
cryptonite_p256_digit top,
cryptonite_p256_digit* c,
cryptonite_p256_digit mask) {
int i;
cryptonite_p256_ddigit carry = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += *c;
carry += P256_DIGIT(MOD, i) & mask;
*c++ = (cryptonite_p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return top + (cryptonite_p256_digit)carry;
}
// c = a * b mod MOD. c can be a and/or b.
void cryptonite_p256_modmul(const cryptonite_p256_int* MOD,
const cryptonite_p256_int* a,
const cryptonite_p256_digit top_b,
const cryptonite_p256_int* b,
cryptonite_p256_int* c) {
cryptonite_p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 };
cryptonite_p256_digit top = 0;
int i;
// Multiply/add into tmp.
for (i = 0; i < P256_NDIGITS; ++i) {
if (i) tmp[i + P256_NDIGITS - 1] = top;
top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i);
}
// Multiply/add top digit
tmp[i + P256_NDIGITS - 1] = top;
top = mulAdd(a, top_b, 0, tmp + i);
// Reduce tmp, digit by digit.
for (; i >= 0; --i) {
cryptonite_p256_digit reducer[P256_NDIGITS] = { 0 };
cryptonite_p256_digit top_reducer;
// top can be any value at this point.
// Guestimate reducer as top * MOD, since msw of MOD is -1.
top_reducer = mulAdd(MOD, top, 0, reducer);
#if P256_BITSPERDIGIT > 32
// Correction when msw of MOD has only high 32 bits set
top_reducer += mulAdd(MOD, top >> 32, 0, reducer);
#endif
// Subtract reducer from top | tmp.
top = subTop(top_reducer, reducer, top, tmp + i);
// top is now either 0 or 1. Make it 0, fixed-timing.
assert(top <= 1);
top = subM(MOD, top, tmp + i, ~(top - 1));
assert(top == 0);
// We have now reduced the top digit off tmp. Fetch new top digit.
top = tmp[i + P256_NDIGITS - 1];
}
// tmp might still be larger than MOD, yet same bit length.
// Make sure it is less, fixed-timing.
addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1));
memcpy(c, tmp, P256_NBYTES);
}
int cryptonite_p256_is_odd(const cryptonite_p256_int* a) { return P256_DIGIT(a, 0) & 1; }
int cryptonite_p256_is_even(const cryptonite_p256_int* a) { return !(P256_DIGIT(a, 0) & 1); }
cryptonite_p256_digit cryptonite_p256_shl(const cryptonite_p256_int* a, int n, cryptonite_p256_int* b) {
int i;
cryptonite_p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1);
n %= P256_BITSPERDIGIT;
for (i = P256_NDIGITS - 1; i > 0; --i) {
cryptonite_p256_digit accu = (P256_DIGIT(a, i) << n);
accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n));
P256_DIGIT(b, i) = accu;
}
P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n);
top = (cryptonite_p256_digit)((((cryptonite_p256_ddigit)top) << n) >> P256_BITSPERDIGIT);
return top;
}
void cryptonite_p256_shr(const cryptonite_p256_int* a, int n, cryptonite_p256_int* b) {
int i;
n %= P256_BITSPERDIGIT;
for (i = 0; i < P256_NDIGITS - 1; ++i) {
cryptonite_p256_digit accu = (P256_DIGIT(a, i) >> n);
accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n));
P256_DIGIT(b, i) = accu;
}
P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n);
}
static void cryptonite_p256_shr1(const cryptonite_p256_int* a, int highbit, cryptonite_p256_int* b) {
int i;
for (i = 0; i < P256_NDIGITS - 1; ++i) {
cryptonite_p256_digit accu = (P256_DIGIT(a, i) >> 1);
accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1));
P256_DIGIT(b, i) = accu;
}
P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) |
(((cryptonite_p256_sdigit) highbit) << (P256_BITSPERDIGIT - 1));
}
// Return -1, 0, 1 for a < b, a == b or a > b respectively.
int cryptonite_p256_cmp(const cryptonite_p256_int* a, const cryptonite_p256_int* b) {
int i;
cryptonite_p256_sddigit borrow = 0;
cryptonite_p256_digit notzero = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += (cryptonite_p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
// Track whether any result digit is ever not zero.
// Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1.
notzero |= !!((cryptonite_p256_digit)borrow);
borrow >>= P256_BITSPERDIGIT;
}
return (int)borrow | notzero;
}
// c = a - b. Returns borrow: 0 or -1.
int cryptonite_p256_sub(const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
int i;
cryptonite_p256_sddigit borrow = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += (cryptonite_p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
if (c) P256_DIGIT(c, i) = (cryptonite_p256_digit)borrow;
borrow >>= P256_BITSPERDIGIT;
}
return (int)borrow;
}
// c = a + b. Returns carry: 0 or 1.
int cryptonite_p256_add(const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
int i;
cryptonite_p256_ddigit carry = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += (cryptonite_p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i);
if (c) P256_DIGIT(c, i) = (cryptonite_p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return (int)carry;
}
// b = a + d. Returns carry, 0 or 1.
int cryptonite_p256_add_d(const cryptonite_p256_int* a, cryptonite_p256_digit d, cryptonite_p256_int* b) {
int i;
cryptonite_p256_ddigit carry = d;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += (cryptonite_p256_ddigit)P256_DIGIT(a, i);
if (b) P256_DIGIT(b, i) = (cryptonite_p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return (int)carry;
}
// b = 1/a mod MOD, binary euclid.
void cryptonite_p256_modinv_vartime(const cryptonite_p256_int* MOD,
const cryptonite_p256_int* a,
cryptonite_p256_int* b) {
cryptonite_p256_int R = P256_ZERO;
cryptonite_p256_int S = P256_ONE;
cryptonite_p256_int U = *MOD;
cryptonite_p256_int V = *a;
for (;;) {
if (cryptonite_p256_is_even(&U)) {
cryptonite_p256_shr1(&U, 0, &U);
if (cryptonite_p256_is_even(&R)) {
cryptonite_p256_shr1(&R, 0, &R);
} else {
// R = (R+MOD)/2
cryptonite_p256_shr1(&R, cryptonite_p256_add(&R, MOD, &R), &R);
}
} else if (cryptonite_p256_is_even(&V)) {
cryptonite_p256_shr1(&V, 0, &V);
if (cryptonite_p256_is_even(&S)) {
cryptonite_p256_shr1(&S, 0, &S);
} else {
// S = (S+MOD)/2
cryptonite_p256_shr1(&S, cryptonite_p256_add(&S, MOD, &S) , &S);
}
} else { // U,V both odd.
if (!cryptonite_p256_sub(&V, &U, NULL)) {
cryptonite_p256_sub(&V, &U, &V);
if (cryptonite_p256_sub(&S, &R, &S)) cryptonite_p256_add(&S, MOD, &S);
if (cryptonite_p256_is_zero(&V)) break; // done.
} else {
cryptonite_p256_sub(&U, &V, &U);
if (cryptonite_p256_sub(&R, &S, &R)) cryptonite_p256_add(&R, MOD, &R);
}
}
}
cryptonite_p256_mod(MOD, &R, b);
}
void cryptonite_p256_mod(const cryptonite_p256_int* MOD,
const cryptonite_p256_int* in,
cryptonite_p256_int* out) {
if (out != in) *out = *in;
addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1));
}
// Verify y^2 == x^3 - 3x + b mod p
// and 0 < x < p and 0 < y < p
int cryptonite_p256_is_valid_point(const cryptonite_p256_int* x, const cryptonite_p256_int* y) {
cryptonite_p256_int y2, x3;
if (cryptonite_p256_cmp(&cryptonite_SECP256r1_p, x) <= 0 ||
cryptonite_p256_cmp(&cryptonite_SECP256r1_p, y) <= 0 ||
cryptonite_p256_is_zero(x) ||
cryptonite_p256_is_zero(y)) return 0;
cryptonite_p256_modmul(&cryptonite_SECP256r1_p, y, 0, y, &y2); // y^2
cryptonite_p256_modmul(&cryptonite_SECP256r1_p, x, 0, x, &x3); // x^2
cryptonite_p256_modmul(&cryptonite_SECP256r1_p, x, 0, &x3, &x3); // x^3
if (cryptonite_p256_sub(&x3, x, &x3)) cryptonite_p256_add(&x3, &cryptonite_SECP256r1_p, &x3); // x^3 - x
if (cryptonite_p256_sub(&x3, x, &x3)) cryptonite_p256_add(&x3, &cryptonite_SECP256r1_p, &x3); // x^3 - 2x
if (cryptonite_p256_sub(&x3, x, &x3)) cryptonite_p256_add(&x3, &cryptonite_SECP256r1_p, &x3); // x^3 - 3x
if (cryptonite_p256_add(&x3, &cryptonite_SECP256r1_b, &x3)) // x^3 - 3x + b
cryptonite_p256_sub(&x3, &cryptonite_SECP256r1_p, &x3);
return cryptonite_p256_cmp(&y2, &x3) == 0;
}
void cryptonite_p256_from_bin(const uint8_t src[P256_NBYTES], cryptonite_p256_int* dst) {
int i, n;
const uint8_t* p = &src[0];
for (i = P256_NDIGITS - 1; i >= 0; --i) {
cryptonite_p256_digit dig = 0;
n = P256_BITSPERDIGIT;
while (n > 0) {
n -= 8;
dig |= ((cryptonite_p256_digit) *(p++)) << n;
}
P256_DIGIT(dst, i) = dig;
}
}
void cryptonite_p256_to_bin(const cryptonite_p256_int* src, uint8_t dst[P256_NBYTES])
{
int i, n;
uint8_t* p = &dst[0];
for (i = P256_NDIGITS -1; i >= 0; --i) {
const cryptonite_p256_digit dig = P256_DIGIT(src, i);
n = P256_BITSPERDIGIT;
while (n > 0) {
n -= 8;
*(p++) = dig >> n;
}
}
}
/*
"p256e" functions are not part of the original source
*/
#define MSB_COMPLEMENT(x) (((x) >> (P256_BITSPERDIGIT - 1)) - 1)
// c = a + b mod MOD
void cryptonite_p256e_modadd(const cryptonite_p256_int* MOD, const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
assert(c); /* avoid repeated checks inside inlined cryptonite_p256_add */
cryptonite_p256_digit top = cryptonite_p256_add(a, b, c);
top = subM(MOD, top, P256_DIGITS(c), -1);
top = subM(MOD, top, P256_DIGITS(c), MSB_COMPLEMENT(top));
addM(MOD, 0, P256_DIGITS(c), top);
}
// c = a - b mod MOD
void cryptonite_p256e_modsub(const cryptonite_p256_int* MOD, const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
assert(c); /* avoid repeated checks inside inlined cryptonite_p256_sub */
cryptonite_p256_digit top = cryptonite_p256_sub(a, b, c);
top = addM(MOD, top, P256_DIGITS(c), ~MSB_COMPLEMENT(top));
top = subM(MOD, top, P256_DIGITS(c), MSB_COMPLEMENT(top));
addM(MOD, 0, P256_DIGITS(c), top);
}
#define NTH_DOUBLE_THEN_ADD(i, a, nth, b, out) \
cryptonite_p256e_montmul(a, a, out); \
for (i = 1; i < nth; i++) \
cryptonite_p256e_montmul(out, out, out); \
cryptonite_p256e_montmul(out, b, out);
const cryptonite_p256_int cryptonite_SECP256r1_r2 = // r^2 mod n
{{P256_LITERAL(0xBE79EEA2, 0x83244C95), P256_LITERAL(0x49BD6FA6, 0x4699799C),
P256_LITERAL(0x2B6BEC59, 0x2845B239), P256_LITERAL(0xF3D95620, 0x66E12D94)}};
const cryptonite_p256_int cryptonite_SECP256r1_one = {{1}};
// Montgomery multiplication, i.e. c = ab/r mod n with r = 2^256.
// Implementation is adapted from 'sc_montmul' in libdecaf.
static void cryptonite_p256e_montmul(const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
int i, j, borrow;
cryptonite_p256_digit accum[P256_NDIGITS+1] = {0};
cryptonite_p256_digit hi_carry = 0;
for (i=0; i<P256_NDIGITS; i++) {
cryptonite_p256_digit mand = P256_DIGIT(a, i);
const cryptonite_p256_digit *mier = P256_DIGITS(b);
cryptonite_p256_ddigit chain = 0;
for (j=0; j<P256_NDIGITS; j++) {
chain += ((cryptonite_p256_ddigit)mand)*mier[j] + accum[j];
accum[j] = chain;
chain >>= P256_BITSPERDIGIT;
}
accum[j] = chain;
mand = accum[0] * P256_MONTGOMERY_FACTOR;
chain = 0;
mier = P256_DIGITS(&cryptonite_SECP256r1_n);
for (j=0; j<P256_NDIGITS; j++) {
chain += (cryptonite_p256_ddigit)mand*mier[j] + accum[j];
if (j) accum[j-1] = chain;
chain >>= P256_BITSPERDIGIT;
}
chain += accum[j];
chain += hi_carry;
accum[j-1] = chain;
hi_carry = chain >> P256_BITSPERDIGIT;
}
memcpy(P256_DIGITS(c), accum, sizeof(*c));
borrow = cryptonite_p256_sub(c, &cryptonite_SECP256r1_n, c);
addM(&cryptonite_SECP256r1_n, 0, P256_DIGITS(c), borrow + hi_carry);
}
// b = 1/a mod n, using Fermat's little theorem.
void cryptonite_p256e_scalar_invert(const cryptonite_p256_int* a, cryptonite_p256_int* b) {
cryptonite_p256_int _1, _10, _11, _101, _111, _1010, _1111;
cryptonite_p256_int _10101, _101010, _101111, x6, x8, x16, x32;
int i;
// Montgomerize
cryptonite_p256e_montmul(a, &cryptonite_SECP256r1_r2, &_1);
// P-256 (secp256r1) Scalar Inversion
// <https://briansmith.org/ecc-inversion-addition-chains-01>
cryptonite_p256e_montmul(&_1 , &_1 , &_10);
cryptonite_p256e_montmul(&_10 , &_1 , &_11);
cryptonite_p256e_montmul(&_10 , &_11 , &_101);
cryptonite_p256e_montmul(&_10 , &_101 , &_111);
cryptonite_p256e_montmul(&_101 , &_101 , &_1010);
cryptonite_p256e_montmul(&_101 , &_1010 , &_1111);
NTH_DOUBLE_THEN_ADD(i, &_1010, 1 , &_1 , &_10101);
cryptonite_p256e_montmul(&_10101 , &_10101 , &_101010);
cryptonite_p256e_montmul(&_101 , &_101010, &_101111);
cryptonite_p256e_montmul(&_10101 , &_101010, &x6);
NTH_DOUBLE_THEN_ADD(i, &x6 , 2 , &_11 , &x8);
NTH_DOUBLE_THEN_ADD(i, &x8 , 8 , &x8 , &x16);
NTH_DOUBLE_THEN_ADD(i, &x16 , 16 , &x16 , &x32);
NTH_DOUBLE_THEN_ADD(i, &x32 , 32+32, &x32 , b);
NTH_DOUBLE_THEN_ADD(i, b , 32, &x32 , b);
NTH_DOUBLE_THEN_ADD(i, b , 6, &_101111, b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 4, &_1111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 5, &_10101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3 + 6, &_101111, b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 1, &_1 , b);
NTH_DOUBLE_THEN_ADD(i, b , 4 + 1, &_1 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 4 + 6, &_101111, b);
NTH_DOUBLE_THEN_ADD(i, b , 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 1, &_1 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 5, &_10101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
// Demontgomerize
cryptonite_p256e_montmul(b, &cryptonite_SECP256r1_one, b);
}
|