1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
{-# OPTIONS_GHC -Wno-redundant-constraints -Wno-orphans #-}
module DeferredFolds.Defs.Unfoldr where
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Short.Internal as ShortByteString
import qualified Data.HashMap.Strict as HashMap
import qualified Data.IntMap.Strict as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.Map.Strict as Map
import qualified Data.Text.Internal as TextInternal
import qualified Data.Vector.Generic as GenericVector
import DeferredFolds.Prelude hiding (fold, reverse)
import qualified DeferredFolds.Prelude as Prelude
import DeferredFolds.Types
import qualified DeferredFolds.Util.TextArray as TextArrayUtil
deriving instance Functor Unfoldr
instance Applicative Unfoldr where
pure x = Unfoldr (\step -> step x)
(<*>) = ap
instance Alternative Unfoldr where
empty = Unfoldr (const id)
{-# INLINE (<|>) #-}
(<|>) (Unfoldr left) (Unfoldr right) = Unfoldr (\step init -> left step (right step init))
instance Monad Unfoldr where
return = pure
{-# INLINE (>>=) #-}
(>>=) (Unfoldr left) rightK =
Unfoldr $ \step -> left $ \input -> case rightK input of Unfoldr right -> right step
instance MonadPlus Unfoldr where
mzero = empty
mplus = (<|>)
instance Semigroup (Unfoldr a) where
(<>) = (<|>)
instance Monoid (Unfoldr a) where
mempty = empty
mappend = (<>)
instance Foldable Unfoldr where
{-# INLINE foldMap #-}
foldMap fn (Unfoldr unfoldr) = unfoldr (mappend . fn) mempty
{-# INLINE foldr #-}
foldr step state (Unfoldr run) = run step state
foldl = foldl'
{-# INLINE foldl' #-}
foldl' leftStep state (Unfoldr unfoldr) = unfoldr rightStep id state
where
rightStep element k state = k $! leftStep state element
instance Traversable Unfoldr where
traverse f (Unfoldr unfoldr) =
unfoldr (\a next -> liftA2 cons (f a) next) (pure mempty)
instance (Eq a) => Eq (Unfoldr a) where
(==) left right = toList left == toList right
instance (Show a) => Show (Unfoldr a) where
show = show . toList
instance IsList (Unfoldr a) where
type Item (Unfoldr a) = a
fromList list = foldable list
toList = foldr (:) []
-- | Apply a Gonzalez fold
{-# INLINE fold #-}
fold :: Fold input output -> Unfoldr input -> output
fold (Fold step init extract) (Unfoldr run) =
run (\input next state -> next $! step state input) extract init
-- | Apply a monadic Gonzalez fold
{-# INLINE foldM #-}
foldM :: (Monad m) => FoldM m input output -> Unfoldr input -> m output
foldM (FoldM step init extract) (Unfoldr unfoldr) =
init >>= unfoldr (\input next state -> step state input >>= next) return >>= extract
-- | Construct from any value by supplying a definition of foldr
{-# INLINE foldrAndContainer #-}
foldrAndContainer :: (forall x. (elem -> x -> x) -> x -> container -> x) -> container -> Unfoldr elem
foldrAndContainer foldr a = Unfoldr (\step init -> foldr step init a)
-- | Construct from any foldable
{-# INLINE foldable #-}
foldable :: (Foldable foldable) => foldable a -> Unfoldr a
foldable = foldrAndContainer foldr
-- | Elements of IntSet.
{-# INLINE intSet #-}
intSet :: IntSet -> Unfoldr Int
intSet = foldrAndContainer IntSet.foldr
-- | Filter the values given a predicate
{-# INLINE filter #-}
filter :: (a -> Bool) -> Unfoldr a -> Unfoldr a
filter test (Unfoldr run) = Unfoldr (\step -> run (\element state -> if test element then step element state else state))
-- | Ascending infinite stream of enums starting from the one specified
{-# INLINE enumsFrom #-}
enumsFrom :: (Enum a) => a -> Unfoldr a
enumsFrom from = Unfoldr $ \step init ->
let loop int = step int (loop (succ int))
in loop from
-- | Enums in the specified inclusive range
{-# INLINE enumsInRange #-}
enumsInRange :: (Enum a, Ord a) => a -> a -> Unfoldr a
enumsInRange from to =
Unfoldr $ \step init ->
let loop int =
if int <= to
then step int (loop (succ int))
else init
in loop from
-- | Ascending infinite stream of ints starting from the one specified
{-# INLINE intsFrom #-}
intsFrom :: Int -> Unfoldr Int
intsFrom = enumsFrom
-- | Ints in the specified inclusive range
{-# INLINE intsInRange #-}
intsInRange :: Int -> Int -> Unfoldr Int
intsInRange = enumsInRange
-- | Associations of a map
{-# INLINE mapAssocs #-}
mapAssocs :: Map key value -> Unfoldr (key, value)
mapAssocs map =
Unfoldr (\step init -> Map.foldrWithKey (\key value state -> step (key, value) state) init map)
-- | Associations of an intmap
{-# INLINE intMapAssocs #-}
intMapAssocs :: IntMap value -> Unfoldr (Int, value)
intMapAssocs intMap =
Unfoldr (\step init -> IntMap.foldrWithKey (\key value state -> step (key, value) state) init intMap)
-- | Keys of a hash-map
{-# INLINE hashMapKeys #-}
hashMapKeys :: HashMap key value -> Unfoldr key
hashMapKeys hashMap =
Unfoldr (\step init -> HashMap.foldrWithKey (\key _ state -> step key state) init hashMap)
-- | Associations of a hash-map
{-# INLINE hashMapAssocs #-}
hashMapAssocs :: HashMap key value -> Unfoldr (key, value)
hashMapAssocs hashMap =
Unfoldr (\step init -> HashMap.foldrWithKey (\key value state -> step (key, value) state) init hashMap)
-- | Value of a hash-map by key
{-# INLINE hashMapAt #-}
hashMapAt :: (Hashable key, Eq key) => HashMap key value -> key -> Unfoldr value
hashMapAt hashMap key = foldable (HashMap.lookup key hashMap)
-- | Value of a hash-map by key
{-# INLINE hashMapValue #-}
{-# DEPRECATED hashMapValue "Use 'hashMapAt' instead" #-}
hashMapValue :: (Hashable key, Eq key) => key -> HashMap key value -> Unfoldr value
hashMapValue key = foldable . HashMap.lookup key
-- | Values of a hash-map by their keys
{-# INLINE hashMapValues #-}
hashMapValues :: (Hashable key, Eq key) => HashMap key value -> Unfoldr key -> Unfoldr value
hashMapValues hashMap keys = keys >>= flip hashMapValue hashMap
-- | Bytes of a bytestring
{-# INLINE byteStringBytes #-}
byteStringBytes :: ByteString -> Unfoldr Word8
byteStringBytes bs = Unfoldr (\step init -> ByteString.foldr step init bs)
-- | Bytes of a short bytestring
{-# INLINE shortByteStringBytes #-}
shortByteStringBytes :: ShortByteString -> Unfoldr Word8
shortByteStringBytes (ShortByteString.SBS ba#) = primArray (PrimArray ba#)
-- | Elements of a prim array
{-# INLINE primArray #-}
primArray :: (Prim prim) => PrimArray prim -> Unfoldr prim
primArray ba = Unfoldr $ \f z -> foldrPrimArray f z ba
-- | Elements of a prim array coming paired with indices
{-# INLINE primArrayWithIndices #-}
primArrayWithIndices :: (Prim prim) => PrimArray prim -> Unfoldr (Int, prim)
primArrayWithIndices pa = Unfoldr $ \step state ->
let !size = sizeofPrimArray pa
loop index =
if index < size
then step (index, indexPrimArray pa index) (loop (succ index))
else state
in loop 0
-- | Elements of a vector
{-# INLINE vector #-}
vector :: (GenericVector.Vector vector a) => vector a -> Unfoldr a
vector vector = Unfoldr $ \step state -> GenericVector.foldr step state vector
-- | Elements of a vector coming paired with indices
{-# INLINE vectorWithIndices #-}
vectorWithIndices :: (GenericVector.Vector vector a) => vector a -> Unfoldr (Int, a)
vectorWithIndices vector = Unfoldr $ \step state -> GenericVector.ifoldr (\index a -> step (index, a)) state vector
-- |
-- Binary digits of a non-negative integral number.
binaryDigits :: (Integral a) => a -> Unfoldr a
binaryDigits = reverse . reverseBinaryDigits
-- |
-- Binary digits of a non-negative integral number in reverse order.
reverseBinaryDigits :: (Integral a) => a -> Unfoldr a
reverseBinaryDigits = reverseDigits 2
-- |
-- Octal digits of a non-negative integral number.
octalDigits :: (Integral a) => a -> Unfoldr a
octalDigits = reverse . reverseOctalDigits
-- |
-- Octal digits of a non-negative integral number in reverse order.
reverseOctalDigits :: (Integral a) => a -> Unfoldr a
reverseOctalDigits = reverseDigits 8
-- |
-- Decimal digits of a non-negative integral number.
decimalDigits :: (Integral a) => a -> Unfoldr a
decimalDigits = reverse . reverseDecimalDigits
-- |
-- Decimal digits of a non-negative integral number in reverse order.
-- More efficient than 'decimalDigits'.
reverseDecimalDigits :: (Integral a) => a -> Unfoldr a
reverseDecimalDigits = reverseDigits 10
-- |
-- Hexadecimal digits of a non-negative number.
hexadecimalDigits :: (Integral a) => a -> Unfoldr a
hexadecimalDigits = reverse . reverseHexadecimalDigits
-- |
-- Hexadecimal digits of a non-negative number in reverse order.
reverseHexadecimalDigits :: (Integral a) => a -> Unfoldr a
reverseHexadecimalDigits = reverseDigits 16
-- |
-- Digits of a non-negative number in numeral system based on the specified radix.
-- The digits come in reverse order.
--
-- E.g., here's how an unfold of binary digits in proper order looks:
--
-- @
-- binaryDigits :: Integral a => a -> Unfoldr a
-- binaryDigits = 'reverse' . 'reverseDigits' 2
-- @
reverseDigits ::
(Integral a) =>
-- | Radix
a ->
-- | Number
a ->
Unfoldr a
reverseDigits radix x = Unfoldr $ \step init ->
let loop x = case divMod x radix of
(next, digit) -> step digit (if next <= 0 then init else loop next)
in loop x
-- |
-- Reverse the order.
--
-- Use with care, because it requires to allocate all elements.
reverse :: Unfoldr a -> Unfoldr a
reverse (Unfoldr unfoldr) = Unfoldr $ \step -> unfoldr (\a f -> f . step a) id
zipWith :: (a -> b -> c) -> Unfoldr a -> Unfoldr b -> Unfoldr c
zipWith f l r =
Prelude.zipWith f (toList l) (toList r) & foldable
-- |
-- Lift into an unfold, which produces pairs with index.
zipWithIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithIndex (Unfoldr unfoldr) = Unfoldr $ \indexedStep indexedState ->
unfoldr
(\a nextStateByIndex index -> indexedStep (index, a) (nextStateByIndex (succ index)))
(const indexedState)
0
-- |
-- Lift into an unfold, which produces pairs with right-associative index.
{-# DEPRECATED zipWithReverseIndex "This function builds up stack. Use 'zipWithIndex' instead." #-}
zipWithReverseIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithReverseIndex (Unfoldr unfoldr) = Unfoldr $ \step init ->
snd
$ unfoldr
(\a (index, state) -> (succ index, step (index, a) state))
(0, init)
-- |
-- Indices of set bits.
setBitIndices :: (FiniteBits a) => a -> Unfoldr Int
setBitIndices a =
let !size = finiteBitSize a
in Unfoldr $ \step state ->
let loop !index =
if index < size
then
if testBit a index
then step index (loop (succ index))
else loop (succ index)
else state
in loop 0
-- |
-- Indices of unset bits.
unsetBitIndices :: (FiniteBits a) => a -> Unfoldr Int
unsetBitIndices a =
let !size = finiteBitSize a
in Unfoldr $ \step state ->
let loop !index =
if index < size
then
if testBit a index
then loop (succ index)
else step index (loop (succ index))
else state
in loop 0
take :: Int -> Unfoldr a -> Unfoldr a
take amount (Unfoldr unfoldr) = Unfoldr $ \step init ->
unfoldr
( \a nextState index ->
if index < amount
then step a (nextState (succ index))
else init
)
(const init)
0
takeWhile :: (a -> Bool) -> Unfoldr a -> Unfoldr a
takeWhile predicate (Unfoldr unfoldr) = Unfoldr $ \step init ->
unfoldr
( \a nextState ->
if predicate a
then step a nextState
else init
)
init
cons :: a -> Unfoldr a -> Unfoldr a
cons a (Unfoldr unfoldr) = Unfoldr $ \step init -> step a (unfoldr step init)
snoc :: a -> Unfoldr a -> Unfoldr a
snoc a (Unfoldr unfoldr) = Unfoldr $ \step init -> unfoldr step (step a init)
-- |
-- Insert a separator value between each element.
--
-- Behaves the same way as 'Data.List.intersperse'.
{-# INLINE intersperse #-}
intersperse :: a -> Unfoldr a -> Unfoldr a
intersperse sep (Unfoldr unfoldr) =
Unfoldr $ \step init ->
unfoldr
( \a next first ->
if first
then step a (next False)
else step sep (step a (next False))
)
(const init)
True
-- |
-- Reproduces the behaviour of 'Data.Text.unpack'.
--
-- Implementation is efficient and avoids allocation of an intermediate list.
textChars :: Text -> Unfoldr Char
textChars (TextInternal.Text arr off len) =
Unfoldr $ \step term ->
let loop !offset =
if offset >= len
then term
else TextArrayUtil.iter arr offset $ \char nextOffset ->
step char (loop nextOffset)
in loop off
-- |
-- Reproduces the behaviour of 'Data.Text.words'.
--
-- Implementation is efficient and avoids allocation of an intermediate list.
textWords :: Text -> Unfoldr Text
textWords (TextInternal.Text arr off len) =
Unfoldr $ \step term ->
let loop !wordOffset !offset =
if offset >= len
then
if wordOffset == offset
then term
else step (chunk wordOffset offset) term
else TextArrayUtil.iter arr offset $ \char nextOffset ->
if isSpace char
then
if wordOffset == offset
then loop nextOffset nextOffset
else step (chunk wordOffset offset) (loop nextOffset nextOffset)
else loop wordOffset nextOffset
in loop off off
where
chunk startOffset afterEndOffset =
TextInternal.Text arr startOffset (afterEndOffset - startOffset)
-- |
-- Transformer of chars,
-- replaces all space-like chars with space,
-- all newline-like chars with @\\n@,
-- and trims their duplicate sequences to single-char.
-- Oh yeah, it also trims whitespace from beginning and end.
trimWhitespace :: Unfoldr Char -> Unfoldr Char
trimWhitespace =
\foldable ->
Unfoldr $ \substep subterm ->
foldr (step substep) (finalize subterm) foldable False False False
where
step substep char next notFirst spacePending newlinePending =
if isSpace char
then
if char == '\n' || char == '\r'
then next notFirst False True
else next notFirst True newlinePending
else
let mapper =
if notFirst
then
if newlinePending
then substep '\n'
else
if spacePending
then substep ' '
else id
else id
in mapper $ substep char $ next True False False
finalize subterm notFirst spacePending newlinePending =
subterm
|