File: Defs.hs

package info (click to toggle)
haskell-deque 0.4.4.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 128 kB
  • sloc: haskell: 928; makefile: 6
file content (313 lines) | stat: -rw-r--r-- 10,547 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
{-# LANGUAGE CPP #-}

-- |
-- Definitions of strict Deque.
--
-- The typical `toList` and `fromList` conversions are provided by means of
-- the `Foldable` and `IsList` instances.
module Deque.Strict.Defs where

import Deque.Prelude hiding (dropWhile, filter, head, init, last, null, reverse, tail, take, takeWhile)
import qualified Deque.Prelude as Prelude
import qualified StrictList

-- |
-- Strict double-ended queue (aka Dequeue or Deque) based on head-tail linked list.
data Deque a = Deque !(StrictList.List a) !(StrictList.List a)

-- |
-- \(\mathcal{O}(n)\).
-- Construct from cons and snoc lists.
{-# INLINE fromConsAndSnocLists #-}
fromConsAndSnocLists :: [a] -> [a] -> Deque a
fromConsAndSnocLists consList snocList = Deque (fromList consList) (fromList snocList)

-- |
-- \(\mathcal{O}(1)\).
-- Add element in the beginning.
{-# INLINE cons #-}
cons :: a -> Deque a -> Deque a
cons a (Deque consList snocList) = Deque (StrictList.Cons a consList) snocList

-- |
-- \(\mathcal{O}(1)\).
-- Add element in the ending.
{-# INLINE snoc #-}
snoc :: a -> Deque a -> Deque a
snoc a (Deque consList snocList) = Deque consList (StrictList.Cons a snocList)

-- |
-- \(\mathcal{O}(1)\).
-- Reverse the deque.
{-# INLINE reverse #-}
reverse :: Deque a -> Deque a
reverse (Deque consList snocList) = Deque snocList consList

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Move the first element to the end.
--
-- @
-- λ toList . shiftLeft $ fromList [1,2,3]
-- [2,3,1]
-- @
{-# INLINE shiftLeft #-}
shiftLeft :: Deque a -> Deque a
shiftLeft deque = maybe deque (uncurry snoc) (uncons deque)

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Move the last element to the beginning.
--
-- @
-- λ toList . shiftRight $ fromList [1,2,3]
-- [3,1,2]
-- @
{-# INLINE shiftRight #-}
shiftRight :: Deque a -> Deque a
shiftRight deque = maybe deque (uncurry cons) (unsnoc deque)

balanceLeft :: Deque a -> Deque a
balanceLeft = error "TODO"

-- |
-- \(\mathcal{O}(n)\).
-- Leave only the elements satisfying the predicate.
{-# INLINE filter #-}
filter :: (a -> Bool) -> Deque a -> Deque a
filter predicate (Deque consList snocList) =
  let newConsList =
        StrictList.prependReversed
          (StrictList.filterReversed predicate consList)
          (StrictList.filterReversed predicate snocList)
   in Deque newConsList StrictList.Nil

-- |
-- \(\mathcal{O}(n)\).
-- Leave only the specified amount of first elements.
take :: Int -> Deque a -> Deque a
take amount (Deque consList snocList) =
  let newSnocList =
        let buildFromConsList amount !list =
              if amount > 0
                then \case
                  StrictList.Cons head tail -> buildFromConsList (pred amount) (StrictList.Cons head list) tail
                  _ -> buildFromSnocList amount list (StrictList.reverse snocList)
                else const list
            buildFromSnocList amount !list =
              if amount > 0
                then \case
                  StrictList.Cons head tail -> buildFromSnocList (pred amount) (StrictList.Cons head list) tail
                  _ -> list
                else const list
         in buildFromConsList amount StrictList.Nil consList
   in Deque StrictList.Nil newSnocList

-- |
-- \(\mathcal{O}(n)\).
-- Drop the specified amount of first elements.
drop :: Int -> Deque a -> Deque a
drop amount (Deque consList snocList) =
  let buildFromConsList amount =
        if amount > 0
          then \case
            StrictList.Cons _ tail -> buildFromConsList (pred amount) tail
            _ -> buildFromSnocList amount (StrictList.reverse snocList)
          else \tail -> Deque tail snocList
      buildFromSnocList amount =
        if amount > 0
          then \case
            StrictList.Cons _ tail -> buildFromSnocList (pred amount) tail
            _ -> Deque StrictList.Nil StrictList.Nil
          else \tail -> Deque tail StrictList.Nil
   in buildFromConsList amount consList

-- |
-- \(\mathcal{O}(n)\).
-- Leave only the first elements satisfying the predicate.
{-# INLINE takeWhile #-}
takeWhile :: (a -> Bool) -> Deque a -> Deque a
takeWhile predicate (Deque consList snocList) =
  let newConsList =
        foldr
          ( \a nextState ->
              if predicate a
                then StrictList.Cons a nextState
                else StrictList.Nil
          )
          (StrictList.takeWhileFromEnding predicate snocList)
          consList
   in Deque newConsList StrictList.Nil

-- |
-- \(\mathcal{O}(n)\).
-- Drop the first elements satisfying the predicate.
{-# INLINE dropWhile #-}
dropWhile :: (a -> Bool) -> Deque a -> Deque a
dropWhile predicate (Deque consList snocList) =
  let newConsList = StrictList.dropWhile predicate consList
   in case newConsList of
        StrictList.Nil -> Deque (StrictList.dropWhileFromEnding predicate snocList) StrictList.Nil
        _ -> Deque newConsList snocList

-- |
-- \(\mathcal{O}(n)\).
-- Perform `takeWhile` and `dropWhile` in a single operation.
span :: (a -> Bool) -> Deque a -> (Deque a, Deque a)
span predicate (Deque consList snocList) = case StrictList.spanReversed predicate consList of
  (consReversedPrefix, consSuffix) ->
    if Prelude.null consSuffix
      then case StrictList.spanFromEnding predicate snocList of
        (snocPrefix, snocSuffix) ->
          let prefix = Deque (StrictList.prependReversed consReversedPrefix snocPrefix) StrictList.Nil
              suffix = Deque snocSuffix StrictList.Nil
           in (prefix, suffix)
      else
        let prefix = Deque StrictList.Nil consReversedPrefix
            suffix = Deque consSuffix snocList
         in (prefix, suffix)

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Get the first element and deque without it if it's not empty.
{-# INLINE uncons #-}
uncons :: Deque a -> Maybe (a, Deque a)
uncons (Deque consList snocList) = case consList of
  StrictList.Cons head tail -> Just (head, Deque tail snocList)
  _ -> case StrictList.reverse snocList of
    StrictList.Cons head tail -> Just (head, Deque tail StrictList.Nil)
    _ -> Nothing

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Get the last element and deque without it if it's not empty.
{-# INLINE unsnoc #-}
unsnoc :: Deque a -> Maybe (a, Deque a)
unsnoc (Deque consList snocList) = case snocList of
  StrictList.Cons head tail -> Just (head, Deque consList tail)
  _ -> case StrictList.reverse consList of
    StrictList.Cons head tail -> Just (head, Deque StrictList.Nil tail)
    _ -> Nothing

-- |
-- \(\mathcal{O}(1)\).
-- Check whether deque is empty.
{-# INLINE null #-}
null :: Deque a -> Bool
null = \case
  Deque StrictList.Nil StrictList.Nil -> True
  _ -> False

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Get the first element if deque is not empty.
{-# INLINE head #-}
head :: Deque a -> Maybe a
head (Deque consList snocList) = case consList of
  StrictList.Cons head _ -> Just head
  _ -> StrictList.last snocList

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Get the last element if deque is not empty.
{-# INLINE last #-}
last :: Deque a -> Maybe a
last (Deque consList snocList) = case snocList of
  StrictList.Cons head _ -> Just head
  _ -> StrictList.last consList

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Keep all elements but the first one.
--
-- In case of empty deque returns an empty deque.
{-# INLINE tail #-}
tail :: Deque a -> Deque a
tail (Deque consList snocList) = case consList of
  StrictList.Cons _ consListTail -> Deque consListTail snocList
  _ -> Deque (StrictList.initReversed snocList) StrictList.Nil

-- |
-- \(\mathcal{O}(1)\), occasionally \(\mathcal{O}(n)\).
-- Keep all elements but the last one.
--
-- In case of empty deque returns an empty deque.
{-# INLINE init #-}
init :: Deque a -> Deque a
init (Deque consList snocList) = case snocList of
  StrictList.Nil -> Deque StrictList.Nil (StrictList.initReversed consList)
  _ -> Deque consList (StrictList.tail snocList)

instance (Eq a) => Eq (Deque a) where
  (==) a b = toList a == toList b

instance (Show a) => Show (Deque a) where
  show = show . toList

instance IsList (Deque a) where
  type Item (Deque a) = a
  fromList list = Deque StrictList.Nil (StrictList.fromListReversed list)
  toList (Deque consList snocList) = foldr (:) (toList (StrictList.reverse snocList)) consList

instance Semigroup (Deque a) where
  (<>) (Deque consList1 snocList1) (Deque consList2 snocList2) =
    let consList = consList1
        snocList = snocList2 <> StrictList.prependReversed consList2 snocList1
     in Deque consList snocList

instance Monoid (Deque a) where
  mempty = Deque StrictList.Nil StrictList.Nil
  mappend = (<>)

deriving instance Functor Deque

instance Foldable Deque where
  foldr step init (Deque consList snocList) = foldr step (foldr step init (StrictList.reverse snocList)) consList
  foldl' step init (Deque consList snocList) = foldl' step (foldl' step init consList) (StrictList.reverse snocList)

instance Traversable Deque where
  traverse f (Deque cs ss) =
    (\cs' ss' -> Deque cs' (StrictList.reverse ss')) <$> traverse f cs <*> traverse f (StrictList.reverse ss)

instance Applicative Deque where
  pure a = Deque (pure a) StrictList.Nil
  (<*>) (Deque fnConsList fnSnocList) (Deque argConsList argSnocList) =
    let snocList =
          let fnStep resultSnocList fn =
                let argStep resultSnocList arg = StrictList.Cons (fn arg) resultSnocList
                 in foldl' argStep (foldl' argStep resultSnocList argConsList) (StrictList.reverse argSnocList)
           in foldl' fnStep (foldl' fnStep StrictList.Nil fnConsList) (StrictList.reverse fnSnocList)
     in Deque StrictList.Nil snocList

instance Monad Deque where
  return = pure
  (>>=) (Deque aConsList aSnocList) k =
    let snocList =
          let aStep accBSnocList a = case k a of
                Deque bConsList bSnocList -> StrictList.prependReversed bConsList (bSnocList <> accBSnocList)
           in foldl' aStep (foldl' aStep StrictList.Nil aConsList) (StrictList.reverse aSnocList)
     in Deque StrictList.Nil snocList
#if !(MIN_VERSION_base(4,13,0))
  fail = const mempty
#endif

instance Alternative Deque where
  empty = mempty
  (<|>) = mappend

instance MonadPlus Deque where
  mzero = empty
  mplus = (<|>)

instance MonadFail Deque where
  fail = const mempty

deriving instance Generic (Deque a)

deriving instance Generic1 Deque

instance (Hashable a) => Hashable (Deque a)

instance (NFData a) => NFData (Deque a)

instance NFData1 Deque