File: StateBinary.hs

package info (click to toggle)
haskell-dns 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 380 kB
  • sloc: haskell: 3,298; ansic: 46; makefile: 2
file content (441 lines) | stat: -rw-r--r-- 14,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE CPP #-}
module Network.DNS.StateBinary (
    PState(..)
  , initialState
  , SPut
  , runSPut
  , put8
  , put16
  , put32
  , putInt8
  , putInt16
  , putInt32
  , putByteString
  , putReplicate
  , SGet
  , failSGet
  , fitSGet
  , runSGet
  , runSGetAt
  , runSGetWithLeftovers
  , runSGetWithLeftoversAt
  , get8
  , get16
  , get32
  , getInt8
  , getInt16
  , getInt32
  , getNByteString
  , sGetMany
  , getPosition
  , getInput
  , getAtTime
  , wsPop
  , wsPush
  , wsPosition
  , addPositionW
  , push
  , pop
  , getNBytes
  , getNoctets
  , skipNBytes
  , parseLabel
  , unparseLabel
  ) where

import qualified Control.Exception as E
import Control.Monad.State.Strict (State, StateT)
import qualified Control.Monad.State.Strict as ST
import qualified Data.Attoparsec.ByteString as A
import qualified Data.Attoparsec.Types as T
import qualified Data.ByteString as BS
import Data.ByteString.Builder (Builder)
import qualified Data.ByteString.Builder as BB
import qualified Data.ByteString.Char8 as S8
import qualified Data.ByteString.Lazy as LB
import qualified Data.ByteString.Lazy.Char8 as LBS
import Data.IntMap (IntMap)
import qualified Data.IntMap as IM
import Data.Map (Map)
import qualified Data.Map as M
import Data.Semigroup as Sem

import Network.DNS.Imports
import Network.DNS.Types.Internal

----------------------------------------------------------------

type SPut = State WState Builder

data WState = WState {
    wsDomain :: Map Domain Int
  , wsPosition :: Int
}

initialWState :: WState
initialWState = WState M.empty 0

instance Sem.Semigroup SPut where
    p1 <> p2 = (Sem.<>) <$> p1 <*> p2

instance Monoid SPut where
    mempty = return mempty
#if !(MIN_VERSION_base(4,11,0))
    mappend = (Sem.<>)
#endif

put8 :: Word8 -> SPut
put8 = fixedSized 1 BB.word8

put16 :: Word16 -> SPut
put16 = fixedSized 2 BB.word16BE

put32 :: Word32 -> SPut
put32 = fixedSized 4 BB.word32BE

putInt8 :: Int -> SPut
putInt8 = fixedSized 1 (BB.int8 . fromIntegral)

putInt16 :: Int -> SPut
putInt16 = fixedSized 2 (BB.int16BE . fromIntegral)

putInt32 :: Int -> SPut
putInt32 = fixedSized 4 (BB.int32BE . fromIntegral)

putByteString :: ByteString -> SPut
putByteString = writeSized BS.length BB.byteString

putReplicate :: Int -> Word8 -> SPut
putReplicate n w =
    fixedSized n BB.lazyByteString $ LB.replicate (fromIntegral n) w

addPositionW :: Int -> State WState ()
addPositionW n = do
    (WState m cur) <- ST.get
    ST.put $ WState m (cur+n)

fixedSized :: Int -> (a -> Builder) -> a -> SPut
fixedSized n f a = do addPositionW n
                      return (f a)

writeSized :: (a -> Int) -> (a -> Builder) -> a -> SPut
writeSized n f a = do addPositionW (n a)
                      return (f a)

wsPop :: Domain -> State WState (Maybe Int)
wsPop dom = do
    doms <- ST.gets wsDomain
    return $ M.lookup dom doms

wsPush :: Domain -> Int -> State WState ()
wsPush dom pos = do
    (WState m cur) <- ST.get
    ST.put $ WState (M.insert dom pos m) cur

----------------------------------------------------------------

type SGet = StateT PState (T.Parser ByteString)

data PState = PState {
    psDomain :: IntMap Domain
  , psPosition :: Int
  , psInput :: ByteString
  , psAtTime  :: Int64
  }

----------------------------------------------------------------

getPosition :: SGet Int
getPosition = ST.gets psPosition

getInput :: SGet ByteString
getInput = ST.gets psInput

getAtTime :: SGet Int64
getAtTime = ST.gets psAtTime

addPosition :: Int -> SGet ()
addPosition n | n < 0 = failSGet "internal error: negative position increment"
              | otherwise = do
    PState dom pos inp t <- ST.get
    let !pos' = pos + n
    when (pos' > BS.length inp) $
        failSGet "malformed or truncated input"
    ST.put $ PState dom pos' inp t

push :: Int -> Domain -> SGet ()
push n d = do
    PState dom pos inp t <- ST.get
    ST.put $ PState (IM.insert n d dom) pos inp t

pop :: Int -> SGet (Maybe Domain)
pop n = ST.gets (IM.lookup n . psDomain)

----------------------------------------------------------------

get8 :: SGet Word8
get8  = ST.lift A.anyWord8 <* addPosition 1

get16 :: SGet Word16
get16 = ST.lift getWord16be <* addPosition 2
  where
    word8' = fromIntegral <$> A.anyWord8
    getWord16be = do
        a <- word8'
        b <- word8'
        return $ a * 0x100 + b

get32 :: SGet Word32
get32 = ST.lift getWord32be <* addPosition 4
  where
    word8' = fromIntegral <$> A.anyWord8
    getWord32be = do
        a <- word8'
        b <- word8'
        c <- word8'
        d <- word8'
        return $ a * 0x1000000 + b * 0x10000 + c * 0x100 + d

getInt8 :: SGet Int
getInt8 = fromIntegral <$> get8

getInt16 :: SGet Int
getInt16 = fromIntegral <$> get16

getInt32 :: SGet Int
getInt32 = fromIntegral <$> get32

----------------------------------------------------------------

overrun :: SGet a
overrun = failSGet "malformed or truncated input"

getNBytes :: Int -> SGet [Int]
getNBytes n | n < 0     = overrun
            | otherwise = toInts <$> getNByteString n
  where
    toInts = map fromIntegral . BS.unpack

getNoctets :: Int -> SGet [Word8]
getNoctets n | n < 0     = overrun
             | otherwise = BS.unpack <$> getNByteString n

skipNBytes :: Int -> SGet ()
skipNBytes n | n < 0     = overrun
             | otherwise = ST.lift (A.take n) >> addPosition n

getNByteString :: Int -> SGet ByteString
getNByteString n | n < 0     = overrun
                 | otherwise = ST.lift (A.take n) <* addPosition n

fitSGet :: Int -> SGet a -> SGet a
fitSGet len parser | len < 0   = overrun
                   | otherwise = do
    pos0 <- getPosition
    ret <- parser
    pos' <- getPosition
    if pos' == pos0 + len
    then return $! ret
    else if pos' > pos0 + len
    then failSGet "element size exceeds declared size"
    else failSGet "element shorter than declared size"

-- | Parse a list of elements that takes up exactly a given number of bytes.
-- In order to avoid infinite loops, if an element parser succeeds without
-- moving the buffer offset forward, an error will be returned.
--
sGetMany :: String -- ^ element type for error messages
         -> Int    -- ^ input buffer length
         -> SGet a -- ^ element parser
         -> SGet [a]
sGetMany elemname len parser | len < 0   = overrun
                             | otherwise = go len []
  where
    go n xs
        | n < 0     = failSGet $ elemname ++ " longer than declared size"
        | n == 0    = pure $ reverse xs
        | otherwise = do
            pos0 <- getPosition
            x    <- parser
            pos1 <- getPosition
            if pos1 <= pos0
            then failSGet $ "internal error: in-place success for " ++ elemname
            else go (n + pos0 - pos1) (x : xs)

----------------------------------------------------------------

-- | To get a broad range of correct RRSIG inception and expiration times
-- without over or underflow, we choose a time half way between midnight PDT
-- 2010-07-15 (the day the root zone was signed) and 2^32 seconds later on
-- 2146-08-21.  Since 'decode' and 'runSGet' are pure, we can't peek at the
-- current time while parsing.  Outside this date range the output is off by
-- some non-zero multiple 2\^32 seconds.
--
dnsTimeMid :: Int64
dnsTimeMid = 3426660848

initialState :: Int64 -> ByteString -> PState
initialState t inp = PState IM.empty 0 inp t

-- Construct our own error message, without the unhelpful AttoParsec
-- \"Failed reading: \" prefix.
--
failSGet :: String -> SGet a
failSGet msg = ST.lift (fail "" A.<?> msg)

runSGetAt :: Int64 -> SGet a -> ByteString -> Either DNSError (a, PState)
runSGetAt t parser inp =
    toResult $ A.parse (ST.runStateT parser $ initialState t inp) inp
  where
    toResult :: A.Result r -> Either DNSError r
    toResult (A.Done _ r)        = Right r
    toResult (A.Fail _ ctx msg)  = Left $ DecodeError $ head $ ctx ++ [msg]
    toResult (A.Partial _)       = Left $ DecodeError "incomplete input"

runSGet :: SGet a -> ByteString -> Either DNSError (a, PState)
runSGet = runSGetAt dnsTimeMid

runSGetWithLeftoversAt :: Int64      -- ^ Reference time for DNS clock arithmetic
                       -> SGet a     -- ^ Parser
                       -> ByteString -- ^ Encoded message
                       -> Either DNSError ((a, PState), ByteString)
runSGetWithLeftoversAt t parser inp =
    toResult $ A.parse (ST.runStateT parser $ initialState t inp) inp
  where
    toResult :: A.Result r -> Either DNSError (r, ByteString)
    toResult (A.Done     i r) = Right (r, i)
    toResult (A.Partial  f)   = toResult $ f BS.empty
    toResult (A.Fail _ ctx e) = Left $ DecodeError $ head $ ctx ++ [e]

runSGetWithLeftovers :: SGet a -> ByteString -> Either DNSError ((a, PState), ByteString)
runSGetWithLeftovers = runSGetWithLeftoversAt dnsTimeMid

runSPut :: SPut -> ByteString
runSPut = LBS.toStrict . BB.toLazyByteString . flip ST.evalState initialWState

----------------------------------------------------------------

-- | Decode a domain name in A-label form to a leading label and a tail with
-- the remaining labels, unescaping backlashed chars and decimal triples along
-- the way. Any  U-label conversion belongs at the layer above this code.
--
parseLabel :: Word8 -> ByteString -> Either DNSError (ByteString, ByteString)
parseLabel sep dom =
    if BS.any (== bslash) dom
    then toResult $ A.parse (labelParser sep mempty) dom
    else check $ safeTail <$> BS.break (== sep) dom
  where
    toResult (A.Partial c)  = toResult (c mempty)
    toResult (A.Done tl hd) = check (hd, tl)
    toResult _ = bottom
    safeTail bs | BS.null bs = mempty
                | otherwise = BS.tail bs
    check r@(hd, tl) | not (BS.null hd) || BS.null tl = Right r
                     | otherwise = bottom
    bottom = Left $ DecodeError $ "invalid domain: " ++ S8.unpack dom

labelParser :: Word8 -> ByteString -> A.Parser ByteString
labelParser sep acc = do
    acc' <- mappend acc <$> A.option mempty simple
    labelEnd sep acc' <|> (escaped >>= labelParser sep . BS.snoc acc')
  where
    simple = fst <$> A.match skipUnescaped
      where
        skipUnescaped = A.skipMany1 $ A.satisfy notSepOrBslash
        notSepOrBslash w = w /= sep && w /= bslash

    escaped = do
        A.skip (== bslash)
        either decodeDec pure =<< A.eitherP digit A.anyWord8
      where
        digit = fromIntegral <$> A.satisfyWith (\n -> n - zero) (<=9)
        decodeDec d =
            safeWord8 =<< trigraph d <$> digit <*> digit
          where
            trigraph :: Word -> Word -> Word -> Word
            trigraph x y z = 100 * x + 10 * y + z

            safeWord8 :: Word -> A.Parser Word8
            safeWord8 n | n > 255 = mzero
                        | otherwise = pure $ fromIntegral n

labelEnd :: Word8 -> ByteString -> A.Parser ByteString
labelEnd sep acc =
    A.satisfy (== sep) *> pure acc <|>
    A.endOfInput       *> pure acc

----------------------------------------------------------------

-- | Convert a wire-form label to presentation-form by escaping
-- the separator, special and non-printing characters.  For simple
-- labels with no bytes that require escaping we get back the input
-- bytestring asis with no copying or re-construction.
--
-- Note: the separator is required to be either \'.\' or \'\@\', but this
-- constraint is the caller's responsibility and is not checked here.
--
unparseLabel :: Word8 -> ByteString -> ByteString
unparseLabel sep label =
    if BS.all (isPlain sep) label
    then label
    else toResult $ A.parse (labelUnparser sep mempty) label
  where
    toResult (A.Partial c) = toResult (c mempty)
    toResult (A.Done _ r) = r
    toResult _ = E.throw UnknownDNSError -- can't happen

labelUnparser :: Word8 -> ByteString -> A.Parser ByteString
labelUnparser sep acc = do
    acc' <- mappend acc <$> A.option mempty asis
    A.endOfInput *> pure acc' <|> (esc >>= labelUnparser sep . mappend acc')
  where
    -- Non-printables are escaped as decimal trigraphs, while printable
    -- specials just get a backslash prefix.
    esc = do
        w <- A.anyWord8
        if w <= 32 || w >= 127
        then let (q100, r100) = w `divMod` 100
                 (q10, r10) = r100 `divMod` 10
              in pure $ BS.pack [ bslash, zero + q100, zero + q10, zero + r10 ]
        else pure $ BS.pack [ bslash, w ]

    -- Runs of plain bytes are recognized as a single chunk, which is then
    -- returned as-is.
    asis = fmap fst $ A.match $ A.skipMany1 $ A.satisfy $ isPlain sep

-- | In the presentation form of DNS labels, these characters are escaped by
-- prepending a backlash. (They have special meaning in zone files). Whitespace
-- and other non-printable or non-ascii characters are encoded via "\DDD"
-- decimal escapes. The separator character is also quoted in each label. Note
-- that '@' is quoted even when not the separator.
escSpecials :: ByteString
escSpecials = "\"$();@\\"

-- | Is the given byte the separator or one of the specials?
isSpecial :: Word8 -> Word8 -> Bool
isSpecial sep w = w == sep || BS.elemIndex w escSpecials /= Nothing

-- | Is the given byte a plain byte that reqires no escaping. The tests are
-- ordered to succeed or fail quickly in the most common cases. The test
-- ranges assume the expected numeric values of the named special characters.
-- Note: the separator is assumed to be either '.' or '@' and so not matched by
-- any of the first three fast-path 'True' cases.
isPlain :: Word8 -> Word8 -> Bool
isPlain sep w | w >= 127                 = False -- <DEL> + non-ASCII
              | w > bslash               = True  -- ']'..'_'..'a'..'z'..'~'
              | w >= zero && w < semi    = True  -- '0'..'9'..':'
              | w > atsign && w < bslash = True  -- 'A'..'Z'..'['
              | w <= 32                  = False -- non-printables
              | isSpecial sep w          = False -- one of the specials
              | otherwise                = True  -- plain punctuation

-- | Some numeric byte constants.
zero, semi, atsign, bslash :: Word8
zero = fromIntegral $ fromEnum '0'    -- 48
semi = fromIntegral $ fromEnum ';'    -- 59
atsign = fromIntegral $ fromEnum '@'  -- 64
bslash = fromIntegral $ fromEnum '\\' -- 92