1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
|
<title>The Haskell 98 Report: Declarations</title>
<body bgcolor="#ffffff"> <i>The Haskell 98 Report</i><br> <a href="index.html">top</a> | <a href="exps.html">back</a> | <a href="modules.html">next</a> | <a href="index98.html">contents</a> | <a href="prelude-index.html">function index</a> <br><hr>
<a name="declarations"></a><a name="sect4"></a>
<h2>4<tt> </tt>Declarations and Bindings</h2>
<p>
In this section, we describe the syntax and informal semantics of Haskell
<I>declarations</I>.<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100></td><td width=20></td><td width=250></td></tr><tr></tr><tr></tr><tr></tr><tr></tr><tr></tr><tr><td>
module </td><td> <tt>-></tt> </td><td> <tt>module</tt> modid [exports] <tt>where</tt> body
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> body
</td></tr><tr><td>
body </td><td> <tt>-></tt> </td><td> <tt>{</tt> impdecls <tt>;</tt> topdecls <tt>}
</tt></td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>{</tt> impdecls <tt>}
</tt></td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>{</tt> topdecls <tt>}
</tt></td></tr><tr><td>
topdecls </td><td> <tt>-></tt> </td><td> topdecl<sub>1</sub> <tt>;</tt> ... <tt>;</tt> topdecl<sub>n</sub> </td><td> <tt> </tt>(n>=1)
</td></tr><tr><td>
topdecl </td><td> <tt>-></tt> </td><td> <tt>type</tt> simpletype <tt>=</tt> type
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>data</tt> [context <tt>=></tt>] simpletype <tt>=</tt> constrs [deriving]
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>newtype</tt> [context <tt>=></tt>] simpletype <tt>=</tt> newconstr [deriving]
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>class</tt> [scontext <tt>=></tt>] simpleclass [<tt>where</tt> cdecls]
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>instance</tt> [scontext <tt>=></tt>] qtycls inst [<tt>where</tt> idecls]
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>default</tt> <tt>(</tt>type<sub>1</sub> <tt>,</tt> ... <tt>,</tt> type<sub>n</sub><tt>)</tt> </td><td> <tt> </tt>(n>=0)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> decl
</td></tr><tr><td>
decls </td><td> <tt>-></tt> </td><td> <tt>{</tt> decl<sub>1</sub> <tt>;</tt> ... <tt>;</tt> decl<sub>n</sub> <tt>}</tt> </td><td> <tt> </tt>(n>=0)
</td></tr><tr><td>
decl </td><td> <tt>-></tt> </td><td> gendecl
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> (funlhs | pat<sup>0</sup>) rhs
</td></tr><tr><td>
cdecls </td><td> <tt>-></tt> </td><td> <tt>{</tt> cdecl<sub>1</sub> <tt>;</tt> ... <tt>;</tt> cdecl<sub>n</sub> <tt>}</tt> </td><td> <tt> </tt>(n>=0)
</td></tr><tr><td>
cdecl </td><td> <tt>-></tt> </td><td> gendecl
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> (funlhs | var) rhs
</td></tr><tr><td>
idecls </td><td> <tt>-></tt> </td><td> <tt>{</tt> idecl<sub>1</sub> <tt>;</tt> ... <tt>;</tt> idecl<sub>n</sub> <tt>}</tt> </td><td> <tt> </tt>(n>=0)
</td></tr><tr><td>
idecl </td><td> <tt>-></tt> </td><td> (funlhs | qfunlhs | var | qvar) rhs
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> </td><td> (empty)
</td></tr><tr><td>
gendecl </td><td> <tt>-></tt> </td><td> vars <tt>::</tt> [context <tt>=></tt>] type </td><td> (type signature)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> fixity [digit] ops </td><td> (fixity declaration)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> </td><td> (empty declaration)
</td></tr><tr><td>
ops </td><td> <tt>-></tt> </td><td> op<sub>1</sub> <tt>,</tt> ... <tt>,</tt> op<sub>n</sub> </td><td> <tt> </tt>(n>=1)
</td></tr><tr><td>
vars </td><td> <tt>-></tt> </td><td> var<sub>1</sub> <tt>,</tt> ...<tt>,</tt> var<sub>n</sub> </td><td> <tt> </tt>(n>=1)
</td></tr><tr><td>
fixity </td><td> <tt>-></tt> </td><td> <tt>infixl</tt> | <tt>infixr</tt> | <tt>infix
</tt></td></tr></table>
<p>
The declarations in the syntactic category <I>topdecls</I> are only allowed
at the top level of a Haskell module (see
Section <a href="modules.html#modules">5</a>), whereas <I>decls</I> may be used either at the top level or
in nested scopes (i.e. those within a <tt>let</tt> or <tt>where</tt> construct).<p>
For exposition, we divide the declarations into
three groups: user-defined datatypes, consisting of <tt>type</tt>, <tt>newtype</tt>,
and <tt>data</tt>
declarations (Section <a href="decls.html#user-defined-datatypes">4.2</a>); type classes and
overloading, consisting of <tt>class</tt>, <tt>instance</tt>, and <tt>default
</tt>declarations (Section <a href="decls.html#overloading">4.3</a>); and nested declarations,
consisting of value bindings, type signatures, and fixity declarations
(Section <a href="decls.html#nested">4.4</a>).<p>
Haskell has several primitive datatypes that are "hard-wired"
(such as integers and floating-point numbers), but most "built-in"
datatypes are defined with normal Haskell code, using normal <tt>type
</tt>and <tt>data</tt> declarations. These "built-in" datatypes are described in detail in
Section <a href="basic.html#basic-types">6.1</a>.<a name="types-overview"></a><p>
<a name="sect4.1"></a>
<h3>4.1<tt> </tt>Overview of Types and Classes</h3>
<p>
Haskell uses a traditional
Hindley-Milner
polymorphic type system to provide a static type semantics
[<a href="haskell.html#$damas-milner82">3</a>, <a href="haskell.html#$hindley69">4</a>], but the type system has been extended with
<I>type</I> and <I>constructor</I> classes (or just
<I>classes</I>) that provide
a structured way to introduce <I>overloaded</I> functions. <p>
A <tt>class</tt> declaration (Section <a href="decls.html#class-decls">4.3.1</a>) introduces a new
<I>type class</I> and the overloaded operations that must be
supported by any type that is an instance of that class. An
<tt>instance</tt> declaration (Section <a href="decls.html#instance-decls">4.3.2</a>) declares that a
type is an <I>instance</I> of a class and includes
the definitions of the overloaded operations---called
<I>class methods</I>---instantiated on the named type.<p>
For example, suppose we wish to overload the operations <tt>(+)</tt> and
<tt>negate</tt> on types <tt>Int</tt> and <tt>Float</tt>. We introduce a new
type class called <tt>Num</tt>:
<tt><br>
<br>
class Num a where -- simplified class declaration for Num<br>
(+) :: a -> a -> a<br>
negate :: a -> a<br>
<br>
</tt>This declaration may be read "a type <tt>a</tt> is an instance of the class
<tt>Num</tt> if there are (overloaded) class methods <tt>(+)</tt> and <tt>negate</tt>, of the
appropriate types, defined on it."<p>
We may then declare <tt>Int</tt> and <tt>Float</tt> to be instances of this class:
<tt><br>
<br>
instance Num Int where -- simplified instance of Num Int<br>
x + y = addInt x y<br>
negate x = negateInt x<br>
<br>
instance Num Float where -- simplified instance of Num Float<br>
x + y = addFloat x y<br>
negate x = negateFloat x<br>
<br>
</tt>where <tt>addInt</tt>, <tt>negateInt</tt>, <tt>addFloat</tt>, and <tt>negateFloat</tt> are assumed
in this case to be primitive functions, but in general could be any
user-defined function. The first declaration above may be read
"<tt>Int</tt> is an instance of the class <tt>Num</tt> as witnessed by these
definitions (i.e. class methods) for <tt>(+)</tt> and <tt>negate</tt>."<p>
More examples of type and constructor classes can be found in
the papers by Jones [<a href="haskell.html#$jones:cclasses">6</a>] or Wadler and Blott
[<a href="haskell.html#$wadler:classes">11</a>].
The term `type class' was used to describe the original Haskell 1.0
type system; `constructor class' was used to describe an extension to
the original type classes. There is no longer any reason to use two
different terms: in this report, `type class' includes both the
original Haskell type classes and the constructor classes
introduced by Jones.<p>
<a name="sect4.1.1"></a>
<h4>4.1.1<tt> </tt>Kinds</h4><p>
To ensure that they are valid, type expressions are classified
into different <I>kinds</I>, which take one of two possible
forms:
<UL><LI>The symbol * represents the kind of all nullary type
constructors.<p>
<LI>If <font face="symbol">k</font><sub>1</sub> and <font face="symbol">k</font><sub>2</sub> are kinds, then <font face="symbol">k</font><sub>1</sub>-><font face="symbol">k</font><sub>2</sub>
is the kind of types that take a type of kind <font face="symbol">k</font><sub>1</sub> and return
a type of kind <font face="symbol">k</font><sub>2</sub>.
</UL>
Kind inference checks the validity of type expressions
in a similar way that type inference checks the validity of value expressions.
However, unlike types, kinds are entirely
implicit and are not visible part of the language. Kind inference is discussed
in Section <a href="decls.html#kindinference">4.6</a>.<a name="type-syntax"></a><p>
<a name="sect4.1.2"></a>
<h4>4.1.2<tt> </tt>Syntax of Types</h4>
<a name="types"></a>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100></td><td width=20></td><td width=250></td></tr><tr></tr><tr></tr><tr><td>
type </td><td> <tt>-></tt> </td><td> btype [<tt>-></tt> type] </td><td> (function type)
</td></tr><tr><td>
btype </td><td> <tt>-></tt> </td><td> [btype] atype </td><td> (type application)
</td></tr><tr><td>
atype </td><td> <tt>-></tt> </td><td> gtycon
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> tyvar
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> type<sub>1</sub> <tt>,</tt> ... <tt>,</tt> type<sub>k</sub> <tt>)</tt> </td><td> (tuple type, k>=2)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>[</tt> type <tt>]</tt> </td><td> (list type)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> type <tt>)</tt> </td><td> (parenthesised constructor)
</td></tr><tr><td>
gtycon </td><td> <tt>-></tt> </td><td> qtycon
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>()</tt> </td><td> (unit type)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>[]</tt> </td><td> (list constructor)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(->)</tt> </td><td> (function constructor)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(,</tt>{<tt>,</tt>}<tt>)</tt> </td><td> (tupling constructors)
</td></tr></table>
<p>
The syntax for Haskell type expressions
is given above. Just as data values are built using data
constructors, type values are built from <I>type constructors</I>. As with
data constructors, the names of type constructors start with uppercase
letters.
Unlike data constructors, infix type constructors are not allowed.<p>
The main forms of type expression are as follows:
<OL><LI>Type variables, written as identifiers beginning with
a lowercase letter. The kind of a variable is determined implicitly
by the context in which it appears.<p>
<LI>Type constructors. Most type constructors are written as identifiers
beginning with an uppercase letter. For example:
<UL><LI><tt>Char</tt>, <tt>Int</tt>, <tt>Integer</tt>, <tt>Float</tt>, <tt>Double</tt> and <tt>Bool</tt> are
type constants with kind *.
<LI><tt>Maybe</tt> and <tt>IO</tt> are unary type
constructors, and treated as types with
kind *->*.
<LI>The declarations <tt>data T ...</tt> or <tt>newtype T ...</tt> add the type
constructor <tt>T</tt> to
the type vocabulary. The kind of <tt>T</tt> is determined by
kind inference.
</UL>
Special syntax is provided for some type constructors:
<UL><LI>The <I>trivial type</I> is written as <tt>()</tt> and
has kind *.
It denotes the "nullary tuple" type, and has exactly one value,
also written <tt>()</tt> (see Sections <a href="exps.html#unit-expression">3.9</a>
and <a href="basic.html#basic-trivial">6.1.5</a>).
<LI>The <I>function type</I> is written as <tt>(->)</tt> and has
kind *->*->*.
<LI>The <I>list type</I> is written as <tt>[]</tt> and has kind
*->*.
<LI>The <I>tuple types</I> are written as <tt>(,)</tt>,
<tt>(,,)</tt>, and so on. Their kinds are
*->*->*,
*->*->*->*, and
so on.
</UL>
Use of the <tt>(->)</tt> and <tt>[]</tt> constants is described in more detail below.<p>
<LI>Type application. If t<sub>1</sub> is a type of kind
<font face="symbol">k</font><sub>1</sub>-><font face="symbol">k</font><sub>2</sub> and t<sub>2</sub> is a type of kind <font face="symbol">k</font><sub>1</sub>,
then t<sub>1</sub> t<sub>2</sub> is a type expression of kind <font face="symbol">k</font><sub>2</sub>.<p>
<LI>A <I>parenthesized type</I>, having form <tt>(</tt><I>t</I><tt>)</tt>, is identical
to the type <I>t</I>.<p>
</OL>
For example, the type expression <tt>IO a</tt> can be understood as the application
of a constant, <tt>IO</tt>, to the variable <tt>a</tt>. Since the <tt>IO</tt> type
constructor has kind
*->*, it follows that both the variable <tt>a</tt> and the whole
expression, <tt>IO a</tt>, must have kind *.
In general, a process of <I>kind inference
</I>(see Section <a href="decls.html#kindinference">4.6</a>)
is needed to determine appropriate kinds for user-defined datatypes, type
synonyms, and classes.<p>
Special syntax is provided to allow certain type expressions to be written
in a more traditional style:
<OL><LI>A <I>function type</I> has the form
<I>t</I><sub><I>1</I></sub><I> </I><tt>-></tt><I> t</I><sub><I>2</I></sub>, which is equivalent to the type
<tt>(->)</tt><I> t</I><sub><I>1</I></sub><I> t</I><sub><I>2</I></sub>. Function arrows associate to the right.<p>
<LI>A <I>tuple type</I> has the form
<tt>(</tt><I>t</I><sub><I>1</I></sub><tt>,</tt><I>...</I><tt>,</tt><I> t</I><sub><I>k</I></sub><tt>)</tt> where <I>k>=2</I>, which is equivalent to
the type <tt>(,</tt><I>...</I><tt>,)</tt><I> t</I><sub><I>1</I></sub><I> ... t</I><sub><I>k</I></sub> where there are
k-1 commas between the parenthesis. It denotes the
type of <I>k</I>-tuples with the first component of type <I>t</I><sub><I>1</I></sub>, the second
component of type <I>t</I><sub><I>2</I></sub>, and so on (see Sections <a href="exps.html#tuples">3.8</a>
and <a href="basic.html#basic-tuples">6.1.4</a>).<p>
<LI>A <I>list type</I> has the form <tt>[</tt><I>t</I><tt>]</tt>,
which is equivalent to the type <tt>[]</tt><I> t</I>.
It denotes the type of lists with elements of type <I>t</I> (see
Sections <a href="exps.html#lists">3.7</a> and <a href="basic.html#basic-lists">6.1.3</a>).<p>
</OL>
Although the tuple, list, and function types have special syntax, they
are not different from user-defined types with equivalent
functionality.<p>
Expressions and types have a consistent syntax.
If <I>t</I><sub><I>i</I></sub> is the type of
expression or pattern <I>e</I><sub><I>i</I></sub>, then the expressions <tt>(\</tt><I> e</I><sub><I>1</I></sub><I> </I><tt>-></tt><I> e</I><sub><I>2</I></sub><tt>)</tt>,
<tt>[</tt><I>e</I><sub><I>1</I></sub><tt>]</tt>, and <tt>(</tt><I>e</I><sub><I>1</I></sub><I>,e</I><sub><I>2</I></sub><tt>)</tt> have the types <tt>(</tt><I>t</I><sub><I>1</I></sub><I> </I><tt>-></tt><I> t</I><sub><I>2</I></sub><tt>)</tt>,
<tt>[</tt><I>t</I><sub><I>1</I></sub><tt>]</tt>, and <tt>(</tt><I>t</I><sub><I>1</I></sub><I>,t</I><sub><I>2</I></sub><tt>)</tt>, respectively.<p>
With one exception, the
type variables in a Haskell type expression
are all assumed to be universally quantified; there is no explicit
syntax for universal quantification [<a href="haskell.html#$damas-milner82">3</a>].
For example, the type expression
<tt>a -> a</tt> denotes the type <I>forall a. a ->a</I>.
For clarity, however, we often write quantification explicitly
when discussing the types of Haskell programs.<p>
The exception referred to is that of the distinguished type variable
in a class declaration (Section <a href="decls.html#class-decls">4.3.1</a>).<a name="classes&contexts"></a><p>
<a name="sect4.1.3"></a>
<h4>4.1.3<tt> </tt>Syntax of Class Assertions and Contexts</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
context </td><td width=20> <tt>-></tt> </td><td width=250> class
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> class<sub>1</sub> <tt>,</tt> ... <tt>,</tt> class<sub>n</sub> <tt>)</tt> </td><td> (n>=0)
</td></tr><tr><td>
class </td><td> <tt>-></tt> </td><td> qtycls tyvar
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> qtycls <tt>(</tt> tyvar atype<sub>1</sub> ... atype<sub>n</sub> <tt>)</tt> </td><td> (n>=1)
</td></tr><tr><td>
qtycls </td><td> <tt>-></tt> </td><td> [ modid <tt>.</tt> ] tycls
</td></tr><tr><td>
tycls </td><td> <tt>-></tt> </td><td> conid
</td></tr><tr><td>
tyvar </td><td> <tt>-></tt> </td><td> varid
</td></tr></table>
<p>
A <I>class assertion</I> has form <I>qtycls tyvar</I>, and
indicates the membership of the parameterized type <I>tyvar</I> in the class
<I>qtycls</I>. A class identifier begins with an uppercase
letter.
A <I>context</I> consists of zero or more class assertions,
and has the general form
<p>
<tt>(</tt><I> C</I><sub><I>1</I></sub><I> u</I><sub><I>1</I></sub><I>, ..., C</I><sub><I>n</I></sub><I> u</I><sub><I>n</I></sub><I> </I><tt>)
<p>
</tt>where <I>C</I><sub><I>1</I></sub><I>, ..., C</I><sub><I>n</I></sub> are class identifiers, and each of the <I>u</I><sub><I>1</I></sub><I>, ..., u</I><sub><I>n</I></sub> is
either a type variable, or the application of type variable to one or more types.
The outer parentheses may be omitted when <I>n=1</I>. In
general, we use <I>cx</I> to denote a context and we write <I>cx </I><tt>=></tt><I> t</I> to
indicate the type <I>t</I> restricted by the context <I>cx</I>.
The context <I>cx</I> must only contain type variables referenced in <I>t</I>.
For convenience,
we write <I>cx </I><tt>=></tt><I> t</I> even if the context <I>cx</I> is empty, although in this
case the concrete syntax contains no <tt>=></tt>.<a name="type-semantics"></a><p>
<a name="sect4.1.4"></a>
<h4>4.1.4<tt> </tt>Semantics of Types and Classes</h4>
<p>
In this subsection, we provide informal details of the type system.
(Wadler and Blott [<a href="haskell.html#$wadler:classes">11</a>] and Jones
[<a href="haskell.html#$jones:cclasses">6</a>] discuss type
and constructor classes, respectively, in more detail.)<p>
The Haskell type system attributes a <I>type</I> to each
expression in the program. In general, a type is of the form
<I>forall </I><u>u</u><I>. cx =>t</I>,
where <u>u</u> is a set of type variables <I>u</I><sub><I>1</I></sub><I>, ..., u</I><sub><I>n</I></sub>.
In any such type, any of the universally-quantified type variables <I>u</I><sub><I>i</I></sub>
that are free in <I>cx</I> must also be free in <I>t</I>.
Furthermore, the context <I>cx</I> must be of the form given above in
Section <a href="decls.html#classes&contexts">4.1.3</a>. For example, here are some
valid types:
<tt><br>
<br>
(Eq a) => a -> a<br>
(Eq a, Show a, Eq b) => [a] -> [b] -> String<br>
(Eq (f a), Functor f) => (a -> b) -> f a -> f b -> Bool<br>
<br>
</tt>In the third type, the constraint <tt>Eq (f a)</tt> cannot be made
simpler because <tt>f</tt> is universally quantified.<p>
The type of an expression <I>e
</I>depends on a <I>type environment
</I>that gives types for the free variables in <I>e</I>, and a
<I>class environment
</I>that declares which types are instances of which classes (a type becomes
an instance of a class only via the presence of an
<tt>instance</tt> declaration or a <tt>deriving</tt> clause).<p>
Types are related by a generalization order
(specified below);
the most general type that can be assigned to a particular
expression (in a given environment) is called its
<I>principal type</I>.
Haskell 's extended Hindley-Milner type system can infer the principal
type of all expressions, including the proper use of overloaded
class methods (although certain ambiguous overloadings could arise, as
described in Section <a href="decls.html#default-decls">4.3.4</a>). Therefore, explicit typings (called
<I>type signatures</I>)
are usually optional (see
Sections <a href="exps.html#expression-type-sigs">3.16</a> and <a href="decls.html#type-signatures">4.4.1</a>).<p>
The type <I>forall </I><u>u</u><I>. cx</I><sub><I>1</I></sub><I> =>t</I><sub><I>1</I></sub> is
<I>more general than
</I>the type <I>forall </I><u>w</u><I>. cx</I><sub><I>2</I></sub><I> =>t</I><sub><I>2</I></sub> if and only if there is
a substitution <I>S</I> whose domain is <u>u</u> such that:
<UL><LI><I>t</I><sub><I>2</I></sub> is identical to <I>S(t</I><sub><I>1</I></sub><I>)</I>.
<LI>Whenever <I>cx</I><sub><I>2</I></sub> holds in the class environment, <I>S(cx</I><sub><I>1</I></sub><I>)</I> also holds.
</UL><p>
The main point about contexts above is that, a value of type
<I>forall </I><u>u</u><I>. cx =>t</I>,
may be instantiated at types <u>s</u> if and only if
the context <I>cx[</I><u>s</u><I>/</I><u>u</u><I>]</I> holds.
For example, consider the function <tt>double</tt>:
<tt><br>
<br>
double x = x + x<br>
<br>
</tt>The most general type of <tt>double</tt> is
<I>forall a. </I><tt>Num</tt><I> a =>a ->a</I>.
<tt>double</tt> may be applied to values of type <tt>Int</tt> (instantiating <I>a</I> to
<tt>Int</tt>), since <tt>Num Int</tt> holds, because <tt>Int</tt> is an instance of the class <tt>Num</tt>.
However, <tt>double</tt> may not normally be applied to values
of type <tt>Char</tt>, because <tt>Char</tt> is not normally an instance of class <tt>Num</tt>. The
user may choose to declare such an instance, in which case <tt>double</tt> may
indeed be applied to a <tt>Char</tt>.<a name="user-defined-datatypes"></a><p>
<a name="sect4.2"></a>
<h3>4.2<tt> </tt>User-Defined Datatypes</h3>
<p>
In this section, we describe algebraic datatypes (<tt>data
</tt>declarations), renamed datatypes (<tt>newtype</tt> declarations), and type
synonyms (<tt>type</tt> declarations). These declarations may only appear at
the top level of a module.<a name="datatype-decls"></a><p>
<a name="sect4.2.1"></a>
<h4>4.2.1<tt> </tt>Algebraic Datatype Declarations</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100></td><td width=20></td><td width=250></td></tr><tr></tr><tr></tr><tr><td>
topdecl </td><td> <tt>-></tt> </td><td> <tt>data</tt> [context <tt>=></tt>] simpletype <tt>=</tt> constrs [deriving]
</td></tr><tr><td>
simpletype </td><td> <tt>-></tt> </td><td> tycon tyvar<sub>1</sub> ... tyvar<sub>k</sub> </td><td> (k>=0)
</td></tr><tr><td>
constrs </td><td> <tt>-></tt> </td><td> constr<sub>1</sub> <tt>|</tt> ... <tt>|</tt> constr<sub>n</sub> </td><td> (n>=1)
</td></tr><tr><td>
constr </td><td> <tt>-></tt> </td><td> con [<tt>!</tt>] atype<sub>1</sub> ... [<tt>!</tt>] atype<sub>k</sub> </td><td> (arity con = k, k>=0)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> (btype | <tt>!</tt> atype) conop (btype | <tt>!</tt> atype) </td><td> (infix conop)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> con <tt>{</tt> fielddecl<sub>1</sub> <tt>,</tt> ... <tt>,</tt> fielddecl<sub>n</sub> <tt>}</tt> </td><td> (n>=0)
</td></tr><tr><td>
fielddecl </td><td> <tt>-></tt> </td><td> vars <tt>::</tt> (type | <tt>!</tt> atype)
</td></tr><tr><td>
deriving </td><td> <tt>-></tt> </td><td> <tt>deriving</tt> (dclass | <tt>(</tt>dclass<sub>1</sub><tt>,</tt> ... <tt>,</tt> dclass<sub>n</sub><tt>)</tt>)</td><td> (n>=0)
</td></tr><tr><td>
dclass </td><td> <tt>-></tt> </td><td> qtycls
</td></tr></table>
The precedence for <I>constr</I> is the same as that for
expressions---normal constructor application has higher precedence
than infix constructor application (thus <tt>a : Foo a</tt> parses as
<tt>a : (Foo a)</tt>).<p>
An algebraic datatype declaration introduces a new type
and constructors over that type and has the form:
<p>
<tt>data</tt><I> cx </I><tt>=></tt><I> T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I> </I><tt>=</tt><I> K</I><sub><I>1</I></sub><I> t</I><sub><I>11</I></sub><I> ... t</I><sub><I>1k</I><sub><I>1</I></sub></sub><I> </I><tt>|</tt><I> ...</I><tt>|</tt><I>
K</I><sub><I>n</I></sub><I> t</I><sub><I>n1</I></sub><I> ... t</I><sub><I>nk</I><sub><I>n</I></sub></sub>
<p>
where <I>cx</I> is a context.
This declaration
introduces a new type constructor <I>T</I> with constituent data
constructors <I>K</I><sub><I>1</I></sub><I>, ..., K</I><sub><I>n</I></sub> whose types are given by:
<p>
<I>K</I><sub><I>i</I></sub><I> :: forall u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I>. cx</I><sub><I>i</I></sub><I> =>t</I><sub><I>i1</I></sub><I> ->...->t</I><sub><I>ik</I><sub><I>i</I></sub></sub><I> ->(T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I>)
<p>
</I>where <I>cx</I><sub><I>i</I></sub> is the largest subset of <I>cx</I> that constrains only those type
variables free in the types <I>t</I><sub><I>i1</I></sub><I>, ..., t</I><sub><I>ik</I><sub><I>i</I></sub></sub>.
The type variables <I>u</I><sub><I>1</I></sub> through <I>u</I><sub><I>k</I></sub> must be distinct and may appear
in <I>cx</I> and the <I>t</I><sub><I>ij</I></sub>; it is a static error
for any other type variable to appear in <I>cx</I> or on the right-hand-side.
The new type constant <I>T</I> has a kind of the form
<font face="symbol">k</font><sub>1</sub>->...-><font face="symbol">k</font><sub>k</sub>->*
where the kinds <font face="symbol">k</font><sub><I>i</I></sub> of the argument variables <I>u</I><sub><I>i</I></sub> are
determined by kind inference
as described in Section <a href="decls.html#kindinference">4.6</a>.
This means that <I>T</I> may be used in type expressions with anywhere
between <I>0</I> and <I>k</I> arguments.<p>
For example, the declaration
<tt><br>
<br>
data Eq a => Set a = NilSet | ConsSet a (Set a)<br>
<br>
</tt>introduces a type constructor <tt>Set</tt> of kind *->*, and constructors <tt>NilSet</tt> and
<tt>ConsSet</tt> with types
<p>
<table >
<tr><td>
<tt>NilSet</tt> </td><td> <I>:: forall a. </I><tt>Set</tt><I> a</I> </td></tr><tr><td><tt>ConsSet</tt> </td><td> <I>:: forall a. </I><tt>Eq</tt><I> a =>a -></I><tt>Set</tt><I> a -></I><tt>Set</tt><I> a
</I></td></tr></table>
<p>
In the example given, the overloaded
type for <tt>ConsSet</tt> ensures that <tt>ConsSet</tt> can only be applied to values whose
type is an instance of the class <tt>Eq</tt>. The context in the <tt>data
</tt>declaration has no other effect whatsoever.<p>
The visibility of a datatype's constructors (i.e. the "abstractness"
of the datatype) outside of the module in which the datatype is
defined is controlled by the form of the datatype's name in the export
list as described in Section <a href="modules.html#abstract-types">5.8</a>.<p>
The optional <tt>deriving</tt> part of a <tt>data</tt> declaration has to do
with <I>derived instances</I>, and is described in
Section <a href="decls.html#derived-decls">4.3.3</a>.<a name="field-labels"></a><p>
<h3>Labelled Fields</h3>
A data constructor of arity <I>k</I> creates an object with <I>k</I> components.
These components are normally accessed positionally as arguments to the
constructor in expressions or patterns. For large datatypes it is
useful to assign <I>field labels</I> to the components of a data object.
This allows a specific field to be referenced independently of its
location within the constructor.<p>
A constructor definition in a <tt>data</tt> declaration using the <tt>{</tt> <tt>}
</tt>syntax assigns labels to the components of the constructor.
Constructors using field labels may be freely mixed with constructors
without them.
A constructor with associated field labels may still be used as an
ordinary constructor; features using labels are
simply a shorthand for operations using an underlying positional
constructor. The arguments to the positional constructor occur in the
same order as the labeled fields. For example, the declaration
<tt><br>
<br>
data C = F { f1,f2 :: Int, f3 :: Bool}<br>
<br>
</tt>defines a type and constructor identical to the one produced by
<tt><br>
<br>
data C = F Int Int Bool<br>
<br>
</tt>Operations using field labels are described in Section <a href="exps.html#field-ops">3.15</a>.
A <tt>data</tt> declaration may use the same field label in multiple
constructors as long as the typing of the field is the same in all
cases after type synonym expansion. A label cannot be shared by
more than one type in scope. Field names share the top level namespace
with ordinary variables and class methods and must not conflict with
other top level names in scope.<a name="strictness-flags"></a><p>
<h3>Strictness Flags</h3>
Whenever a data constructor is applied, each argument to the
constructor is evaluated if and only if the corresponding type in the
algebraic datatype declaration has a strictness flag (<tt>!</tt>).<p>
<table border=2 cellpadding=3>
<tr><td>
<h3>Translation:</h3>
A declaration of the form
<p>
<tt>data</tt><I> cx </I><tt>=></tt><I> T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I> </I><tt>=</tt><I> ... </I><tt>|</tt><I> K s</I><sub><I>1</I></sub><I> ... s</I><sub><I>n</I></sub><I> </I><tt>|</tt><I> ...
<p>
</I>where each <I>s</I><sub><I>i</I></sub> is either of the form <tt>!</tt><I> t</I><sub><I>i</I></sub> or <I>t</I><sub><I>i</I></sub>, replaces
every occurance of <I>K</I> in an expression by
<p>
<tt>(\ </tt><I>x</I><sub><I>1</I></sub><I> ... x</I><sub><I>n</I></sub><I> </I><tt>-></tt><I> ( ((K op</I><sub><I>1</I></sub><I> x</I><sub><I>1</I></sub><I>) op</I><sub><I>2</I></sub><I> x</I><sub><I>2</I></sub><I>) ... ) op</I><sub><I>n</I></sub><I> x</I><sub><I>n</I></sub><I>)
<p>
</I>where <I>op</I><sub><I>i</I></sub> is the lazy apply function <tt>$</tt> if <I>s</I><sub><I>i</I></sub> is of the form <I>t</I><sub><I>i</I></sub>,
and <I>op</I><sub><I>i</I></sub> is the strict apply function <tt>$!</tt> (see
Section <a href="basic.html#strict-eval">6.2</a>) if <I>s</I><sub><I>i</I></sub> is of the form <tt>!</tt><I> t</I><sub><I>i</I></sub>. Pattern
matching on <I>K</I> is not affected by strictness flags.
</td></tr></table>
<a name="type-synonym-decls"></a><p>
<a name="sect4.2.2"></a>
<h4>4.2.2<tt> </tt>Type Synonym Declarations</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
topdecl </td><td width=20> <tt>-></tt> </td><td width=250> <tt>type</tt> simpletype <tt>=</tt> type
</td></tr><tr><td>
simpletype </td><td> <tt>-></tt> </td><td> tycon tyvar<sub>1</sub> ... tyvar<sub>k</sub> </td><td> (k>=0)
</td></tr></table>
A type synonym declaration introduces a new type that
is equivalent to an old type. It has the form
<p>
<tt>type</tt><I> T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I> </I><tt>=</tt><I> t
<p>
</I>which introduces a new type constructor, <I>T</I>. The type <I>(T t</I><sub><I>1</I></sub><I> ...
t</I><sub><I>k</I></sub><I>)</I> is equivalent to the type <I>t[t</I><sub><I>1</I></sub><I>/u</I><sub><I>1</I></sub><I>, ..., t</I><sub><I>k</I></sub><I>/u</I><sub><I>k</I></sub><I>]</I>. The type
variables <I>u</I><sub><I>1</I></sub> through <I>u</I><sub><I>k</I></sub> must be distinct and are scoped only
over <I>t</I>; it is a static error for any other type variable to appear
in <I>t</I>. The kind of the new type constructor <I>T</I> is of the form
<font face="symbol">k</font><sub>1</sub>->...-><font face="symbol">k</font><sub>k</sub>-><font face="symbol">k</font> where
the kinds <font face="symbol">k</font><sub><I>i</I></sub> of the arguments <I>u</I><sub><I>i</I></sub> and <font face="symbol">k</font> of the right hand
side <I>t</I> are determined by kind inference as described in
Section <a href="decls.html#kindinference">4.6</a>.
For example, the following definition can be used to provide an alternative
way of writing the list type constructor:
<tt><br>
<br>
type List = []<br>
<br>
</tt>Type constructor symbols <I>T</I> introduced by type synonym declarations cannot
be partially applied; it is a static error to use <I>T</I> without the full number
of arguments.<p>
Although recursive and mutually recursive datatypes are allowed,
this is not so for type synonyms, <I>unless an algebraic datatype
intervenes</I>. For example,
<tt><br>
<br>
type Rec a = [Circ a]<br>
data Circ a = Tag [Rec a]<br>
<br>
</tt>is allowed, whereas
<tt><br>
<br>
type Rec a = [Circ a] -- invalid<br>
type Circ a = [Rec a] --<br>
<br>
</tt>is not. Similarly, <tt>type Rec a = [Rec a]</tt> is not allowed.<p>
Type synonyms are a strictly syntactic mechanism to make type
signatures more readable. A synonym and its definition are completely
interchangeable.<a name="datatype-renaming"></a><p>
<a name="sect4.2.3"></a>
<h4>4.2.3<tt> </tt>Datatype Renamings</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
topdecl </td><td width=20> <tt>-></tt> </td><td width=250> <tt>newtype</tt> [context <tt>=></tt>] simpletype <tt>=</tt> newconstr [deriving]
</td></tr><tr><td>
newconstr </td><td> <tt>-></tt> </td><td> con atype
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> con <tt>{</tt> var <tt>::</tt> type <tt>}</tt>
</td></tr><tr><td>
simpletype </td><td> <tt>-></tt> </td><td> tycon tyvar<sub>1</sub> ... tyvar<sub>k</sub> </td><td> (k>=0)
</td></tr></table>
<p>
A declaration of the form
<p>
<tt>newtype</tt><I> cx </I><tt>=></tt><I> T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I> </I><tt>=</tt><I> N t
<p>
</I>introduces a new type whose
representation is the same as an existing type. The type <tt>(</tt><I>T u</I><sub><I>1</I></sub>
<I>... u</I><sub><I>k</I></sub><tt>)</tt> renames the datatype <I>t</I>.
It differs from a type synonym in
that it creates a distinct type that must be explicitly coerced to or
from the original type. Also, unlike type synonyms, <tt>newtype</tt> may be
used to define recursive types.
The constructor <I>N</I> in an expression
coerces a value from type <I>t</I> to type <tt>(</tt><I>T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><tt>)</tt>.
Using <I>N</I> in a pattern coerces a value from type <tt>(</tt><I>T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><tt>)
</tt>to type <I>t</I>. These coercions may be implemented without
execution time overhead; <tt>newtype</tt> does not change the underlying
representation of an object.<p>
New instances (see Section <a href="decls.html#instance-decls">4.3.2</a>) can be defined for a
type defined by <tt>newtype</tt> but may not be defined for a type synonym. A type
created by <tt>newtype</tt> differs from an algebraic datatype in that the
representation of an
algebraic datatype has an extra level of indirection. This difference
makes access to the representation less efficient. The difference is
reflected in different rules for pattern matching (see
Section <a href="exps.html#pattern-matching">3.17</a>). Unlike algebraic datatypes, the
newtype constructor <I>N</I> is <I>unlifted</I>, so that <I>N _|_
</I>is the same as <I>_|_</I>.<p>
The following examples clarify the differences between <tt>data</tt> (algebraic
datatypes), <tt>type</tt> (type synonyms), and <tt>newtype</tt> (renaming types.)
Given the declarations
<tt><br>
<br>
data D1 = D1 Int<br>
data D2 = D2 !Int<br>
type S = Int<br>
newtype N = N Int<br>
d1 (D1 i) = 42<br>
d2 (D2 i) = 42<br>
s i = 42<br>
n (N i) = 42<br>
<br>
</tt>the expressions <tt>(</tt><I> </I><tt>d1</tt><I> _|_</I><tt>)</tt>, <tt>(</tt><I> </I><tt>d2</tt><I> _|_</I><tt>)</tt> and
<tt>(d2 (D2</tt><I> _|_</I><tt>) )</tt> are all
equivalent to <I>_|_</I>, whereas <tt>(</tt><I> </I><tt>n</tt><I> _|_</I><tt>)</tt>, <tt>(</tt><I> </I><tt>n</tt><I> </I><tt>(</tt><I> </I><tt>N
</tt><I>_|_</I><tt>) )</tt>, <tt>(</tt><I> </I><tt>d1</tt><I> </I><tt>(</tt><I> </I><tt>D1</tt><I> _|_</I><tt>) )</tt> and <tt>(</tt><I> </I><tt>s</tt><I> _|_</I><tt>)
</tt>are all equivalent to <tt>42</tt>. In particular, <tt>(</tt><I> </I><tt>N</tt><I> _|_</I><tt>)</tt> is equivalent to
<I>_|_</I> while <tt>(</tt><I> </I><tt>D1</tt><I> _|_</I><tt>)</tt> is not equivalent to <I>_|_</I>.<p>
The optional deriving part of a <tt>newtype</tt> declaration is treated in
the same way as the deriving component of a <tt>data</tt> declaration; see
Section <a href="decls.html#derived-decls">4.3.3</a>.<p>
A <tt>newtype</tt> declaration may use field-naming syntax, though of course
there may only be one field. Thus:
<tt><br>
<br>
newtype Age = Age { unAge :: Int }<br>
<br>
</tt>brings into scope both a constructor and a destructor:
<tt><br>
<br>
Age :: Int -> Age<br>
unAge :: Age -> Int<br>
<br>
<a name="overloading"></a><p>
</tt><a name="sect4.3"></a>
<h3>4.3<tt> </tt>Type Classes and Overloading</h3>
<a name="classes"></a>
<a name="class-decls"></a><p>
<a name="sect4.3.1"></a>
<h4>4.3.1<tt> </tt>Class Declarations</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
topdecl </td><td width=20> <tt>-></tt> </td><td width=250> <tt>class</tt> [scontext <tt>=></tt>] simpleclass [<tt>where</tt> cdecls]
</td></tr><tr><td>
scontext </td><td> <tt>-></tt> </td><td> simpleclass
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> simpleclass<sub>1</sub> <tt>,</tt> ... <tt>,</tt> simpleclass<sub>n</sub> <tt>)</tt> </td><td> (n>=0)
</td></tr><tr><td>
simpleclass </td><td> <tt>-></tt> </td><td> qtycls tyvar
</td></tr><tr><td>
cdecls </td><td> <tt>-></tt> </td><td> <tt>{</tt> cdecl<sub>1</sub> <tt>;</tt> ... <tt>;</tt> cdecl<sub>n</sub> <tt>}</tt> </td><td> <tt> </tt>(n>=0)
</td></tr><tr><td>
cdecl </td><td> <tt>-></tt> </td><td> gendecl
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> (funlhs | var) rhs
</td></tr></table>
<p>
A <I>class declaration</I> introduces a new class and the operations
(<I>class methods</I>) on it.
A class declaration has the general form:
<p>
<table >
<tr><td align=right>
<tt>class</tt><I> cx </I><tt>=></tt><I> C u </I><tt>where</tt><I> cdecls
</I></td></tr></table>
<p>
This introduces a new class name <I>C</I>; the type variable <I>u</I> is
scoped only over the class method signatures in the class body.
The context <I>cx</I> specifies the superclasses of <I>C</I>, as
described below; the only type variable that may be referred to in <I>cx
</I>is <I>u</I>.<p>
The superclass relation must not be cyclic; i.e. it must form a
directed acyclic graph.<p>
The <I>cdecls</I> part of a <tt>class</tt> declaration contains three kinds
of declarations:
<UL><LI>
The class declaration introduces new <I>class methods
v</I><sub><I>i</I></sub>, whose scope extends outside the <tt>class</tt> declaration.
The class methods of a class declaration are precisely the <I>v</I><sub><I>i</I></sub> for
which there is an explicit type signature
<p>
<I>v</I><sub><I>i</I></sub><I> </I><tt>::</tt><I> cx</I><sub><I>i</I></sub><I> </I><tt>=></tt><I> t</I><sub><I>i</I></sub>
<p>
in <I>cdecls</I>.
Class methods share the top level namespace with variable
bindings and field names; they must not conflict with other top level
bindings in scope.
That is, a class method can
not have the same name as a top level definition, a field name, or
another class method.<p>
The type of the top-level class method <I>v</I><sub><I>i</I></sub> is:
<p>
v<sub>i</sub> :: forall u,<u>w</u>. (C u, cx<sub>i</sub>) =>t<sub>i</sub>
<p>
The <I>t</I><sub><I>i</I></sub> must mention <I>u</I>; it may mention type variables
<u>w</u> other than <I>u</I>, in which case the type of <I>v</I><sub><I>i</I></sub> is
polymorphic in both <I>u</I> and <u>w</u>.
The <I>cx</I><sub><I>i</I></sub> may constrain only <u>w</u>; in particular,
the <I>cx</I><sub><I>i</I></sub> may not constrain <I>u</I>.
For example:
<tt><br>
<br>
class Foo a where<br>
op :: Num b => a -> b -> a<br>
<br>
</tt>Here the type of <tt>op</tt> is
<I>forall a, b. (</I><tt>Foo</tt><I> a, </I><tt>Num</tt><I> b) =>a ->b ->a</I>.<p>
<LI>
The <I>cdecls</I> may also contain a <I>fixity declaration</I> for any of the class methods
(but for no other values).
However, since class methods declare top-level values, the fixity declaration for a class
method may alternatively appear at top level, outside the class declaration.<p>
<LI>
Lastly, the <I>cdecls</I> may contain a
<I>default class method
</I>for any of the <I>v</I><sub><I>i</I></sub>. The default class method for <I>v</I><sub><I>i</I></sub> is used if no binding for it
is given in a particular <tt>instance</tt> declaration (see
Section <a href="decls.html#instance-decls">4.3.2</a>).
The default method declaration is a normal value definition, except that the
left hand side may only be a variable or function definition. For example:
<tt><br>
<br>
class Foo a where<br>
op1, op2 :: a -> a<br>
(op1, op2) = ...<br>
<br>
</tt>is not permitted, because the left hand side of the default declaration is a
pattern.
</UL>
Other than these cases, no other declarations are permitted in <I>cdecls</I>.<p>
A <tt>class
</tt>declaration with no <tt>where</tt> part
may be useful for combining a
collection of classes into a larger one that inherits all of the
class methods in the original ones. For example:
<tt><br>
<br>
class (Read a, Show a) => Textual a<br>
<br>
</tt>In such a case, if a type is an instance of all
superclasses, it is
not <I>automatically</I> an instance of the subclass, even though the
subclass has no immediate class methods. The <tt>instance</tt> declaration must be
given explicitly with no <tt>where</tt> part.<a name="instance-decls"></a><p>
<a name="sect4.3.2"></a>
<h4>4.3.2<tt> </tt>Instance Declarations</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
topdecl </td><td width=20> <tt>-></tt> </td><td width=250> <tt>instance</tt> [scontext <tt>=></tt>] qtycls inst [<tt>where</tt> idecls]
</td></tr><tr><td>
inst </td><td> <tt>-></tt> </td><td> gtycon
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> gtycon tyvar<sub>1</sub> ... tyvar<sub>k</sub> <tt>)</tt> </td><td> (k>=0, tyvars distinct)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> tyvar<sub>1</sub> <tt>,</tt> ... <tt>,</tt> tyvar<sub>k</sub> <tt>)</tt> </td><td> (k>=2, tyvars distinct)
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>[</tt> tyvar <tt>]
</tt></td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> tyvar<sub>1</sub> <tt>-></tt> tyvar<sub>2</sub> <tt>)</tt> </td><td> tyvar<sub>1</sub> and tyvar<sub>2</sub> distinct
</td></tr><tr><td>
idecls </td><td> <tt>-></tt> </td><td> <tt>{</tt> idecl<sub>1</sub> <tt>;</tt> ... <tt>;</tt> idecl<sub>n</sub> <tt>}</tt> </td><td> <tt> </tt>(n>=0)
</td></tr><tr><td>
idecl </td><td> <tt>-></tt> </td><td> (funlhs | var | qfunlhs | qvar) rhs
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> </td><td> (empty)
</td></tr><tr><td>
qfunlhs </td><td> <tt>-></tt> </td><td> qvar apat {apat }
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> pat<sup>i+1</sup> qvarop<sup>(a,i)</sup> pat<sup>i+1</sup>
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> lpat<sup>i</sup> qvarop<sup>(l,i)</sup> pat<sup>i+1</sup>
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> pat<sup>i+1</sup> qvarop<sup>(r,i)</sup> rpat<sup>i</sup>
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> qfunlhs <tt>)</tt> apat {apat }
</td></tr></table>
An <I>instance declaration</I> introduces an instance of a class. Let
<p>
<tt>class</tt><I> cx </I><tt>=></tt><I> C u </I><tt>where</tt><I> </I><tt>{</tt><I> cbody </I><tt>}</tt> <p>
be a <tt>class</tt> declaration. The general form of the corresponding
instance declaration is:
<p>
<tt>instance</tt><I> cx' </I><tt>=></tt><I> C (T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I>) </I><tt>where</tt><I> </I><tt>{</tt><I> d </I><tt>}</tt> <p>
where <I>k>=0</I> and <I>T</I> is not a type synonym.
The constructor being instanced, <I>(T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I>)</I>, is
a type constructor applied to simple type variables <I>u</I><sub><I>1</I></sub><I>, ... u</I><sub><I>k</I></sub>,
which must be distinct. This prohibits instance declarations
such as:
<tt><br>
<br>
instance C (a,a) where ...<br>
instance C (Int,a) where ...<br>
instance C [[a]] where ...<br>
<br>
</tt>The declarations <I>d</I> may contain bindings only for the class
methods of <I>C</I>. The declarations may not contain any type
signatures or fixity declarations,
since these have already been given in the <tt>class
</tt>declaration. As in the case of default class methods
(Section <a href="decls.html#class-decls">4.3.1</a>), the method declarations must take the form of
a variable or function defintion.
However, unlike other declarations, the name of the bound
variable may be qualified. So this is legal:
<tt><br>
<br>
module A where<br>
import qualified B( Foo(op) )<br>
instance B.Foo Int where<br>
B.op = ...<br>
<br>
</tt>Here, module <tt>A</tt> imports class <tt>Foo</tt> from module <tt>B</tt>, and then gives an
instance declaration for <tt>Foo</tt>. Since <tt>B</tt> is imported <tt>qualified</tt>, the name
of the class method, <tt>op</tt>, is not in scope; so the definition must define <tt>B.op</tt>.
Hence the need for the <I>qfunlhs</I> and <I>qvar</I> left hand sides in <I>idecl</I>.<p>
If no binding is given for some class method then the
corresponding default class method
in the <tt>class</tt> declaration is used (if
present); if such a default does
not exist then the class method of this instance
is bound to <tt>undefined</tt>
and no compile-time error results.<p>
An <tt>instance</tt> declaration that makes the type <I>T</I> to be an instance
of class <I>C</I> is called a <I>C-T instance declaration
</I> and is
subject to these static restrictions:
<UL><LI>A type may not be declared as an instance of a
particular class more than once in the program.<p>
<LI>The class and type must have the same kind;
this can be determined using kind inference as described
in Section <a href="decls.html#kindinference">4.6</a>.<p>
<LI>
Assume that the type variables in the instance type <I>(T u</I><sub><I>1</I></sub><I> ... u</I><sub><I>k</I></sub><I>)
</I>satisfy the constraints in the instance context <I>cx'</I>. Under this
assumption, the following two conditions must also be satisfied:
<OL><LI>
The constraints expressed by the superclass context <I>cx[(T u1 ... uk)/u]
</I> of <I>C</I> must be satisfied. In other words, <I>T</I> must be an instance
of each of <I>C</I>'s superclasses and the contexts of all
superclass instances must be implied by <I>cx'</I>.
<LI>
Any constraints on the type variables in the instance type
that are required for the class method declarations in <I>d</I> to be
well-typed must also be satisfied.
</OL><p>
In fact, except in pathological cases
it is possible to infer from the instance declaration the
most general instance context <I>cx'</I> satisfying the above two constraints,
but it is nevertheless mandatory
to write an explicit instance context.
</UL>
The following illustrates the restrictions imposed by superclass instances:
<tt><br>
<br>
class Foo a => Bar a where ...<br>
<br>
instance (Eq a, Show a) => Foo [a] where ...<br>
<br>
instance Num a => Bar [a] where ...<br>
<br>
</tt>This is perfectly valid. Since <tt>Foo</tt> is a superclass of <tt>Bar</tt>,
the second instance declaration is only valid if <tt>[a]</tt> is an
instance of <tt>Foo</tt> under the assumption <tt>Num a</tt>.
The first instance declaration does indeed say that <tt>[a]</tt> is an instance
of <tt>Foo</tt> under this assumption, because <tt>Eq</tt> and <tt>Show</tt> are superclasses
of <tt>Num</tt>.<p>
If the two instance declarations instead read like this:
<tt><br>
<br>
instance Num a => Foo [a] where ...<br>
<br>
instance (Eq a, Show a) => Bar [a] where ...<br>
<br>
</tt>then the program would be invalid. The second instance declaration is
valid only if <tt>[a]</tt> is an instance of <tt>Foo</tt> under the assumptions
<tt>(Eq a, Show a)</tt>. But this does not hold, since <tt>[a]</tt> is only an
instance of <tt>Foo</tt> under the stronger assumption <tt>Num a</tt>.<p>
Further examples of
<tt>instance</tt> declarations may be found in Appendix <a href="standard-prelude.html#stdprelude">A</a>.<a name="derived-decls"></a><p>
<a name="sect4.3.3"></a>
<h4>4.3.3<tt> </tt>Derived Instances</h4>
<p>
As mentioned in Section <a href="decls.html#datatype-decls">4.2.1</a>, <tt>data</tt> and <tt>newtype
</tt>declarations
contain an optional <tt>deriving</tt> form. If the form is included, then
<I>derived instance declarations</I> are automatically generated for
the datatype in each of the named classes.
These instances are subject to the same restrictions as user-defined
instances. When deriving a class <I>C</I> for a type <I>T</I>, instances for
all superclasses of <I>C</I> must exist for <I>T</I>, either via an explicit
<tt>instance</tt> declaration or by including the superclass in the
<tt>deriving</tt> clause.<p>
Derived instances provide convenient commonly-used operations for
user-defined datatypes. For example, derived instances for datatypes
in the class <tt>Eq</tt> define the operations <tt>==</tt> and <tt>/=</tt>, freeing the
programmer from the need to define them.<p>
The only classes in the Prelude for
which derived instances are allowed are
<tt>Eq</tt>,
<tt>Ord</tt>,
<tt>Enum</tt>,
<tt>Bounded</tt>,
<tt>Show</tt>,
and <tt>Read</tt>,
all defined in Figure <a href="basic.html#standard-classes">5</a>, page .
The
precise details of how the derived instances are generated for each of
these classes are provided in Appendix <a href="derived.html#derived-appendix">D</a>, including
a specification of when such derived instances are possible.
Classes defined by the standard libraries may also be derivable.<p>
A static error results if it is not possible to derive an <tt>instance
</tt>declaration over a class named in a <tt>deriving</tt> form. For example,
not all datatypes can properly support class methods in
<tt>Enum</tt>. It is
also a static error to give an explicit <tt>instance</tt> declaration for
a class that is also derived.<p>
If the <tt>deriving</tt> form is omitted from a <tt>data</tt> or <tt>newtype
</tt>declaration, then <I>no</I> instance declarations
are derived for
that datatype; that is, omitting a <tt>deriving</tt> form is equivalent to
including an empty deriving form: <tt>deriving ()</tt>.<a name="default-decls"></a><p>
<a name="sect4.3.4"></a>
<h4>4.3.4<tt> </tt>Ambiguous Types, and Defaults for Overloaded Numeric Operations</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
topdecl </td><td width=20> <tt>-></tt> </td><td width=250> <tt>default</tt> <tt>(</tt>type<sub>1</sub> <tt>,</tt> ... <tt>,</tt> type<sub>n</sub><tt>)</tt> </td><td> <tt> </tt>(n>=0)
</td></tr></table>
<p>
A problem inherent with Haskell -style overloading is the
possibility of an <I>ambiguous type</I>.
For example, using the
<tt>read</tt> and <tt>show</tt> functions defined in Appendix <a href="derived.html#derived-appendix">D</a>,
and supposing that just <tt>Int</tt> and <tt>Bool</tt> are members of <tt>Read</tt> and
<tt>Show</tt>, then the expression
<tt><br>
<br>
let x = read "..." in show x -- invalid<br>
<br>
</tt>is ambiguous, because the types for <tt>show</tt> and <tt>read</tt>,
<p>
<table >
<tr><td>
<tt>show</tt> </td><td> <I>:: forall a. </I><tt>Show</tt><I> a =>a -></I><tt>String</tt> </td></tr><tr><td><tt>read</tt> </td><td> <I>:: forall a. </I><tt>Read</tt><I> a =></I><tt>String</tt><I> ->a
</I></td></tr></table>
<p>
could be satisfied by instantiating <tt>a</tt> as either <tt>Int
</tt>in both cases, or <tt>Bool</tt>. Such expressions
are considered ill-typed, a static error.<p>
We say that an expression <tt>e</tt> has an <I>ambiguous type
</I>if, in its type <I>forall </I><u>u</u><I>. cx =>t</I>,
there is a type variable <I>u</I> in <u>u</u> that occurs in <I>cx</I>
but not in <I>t</I>. Such types are invalid.<p>
For example, the earlier expression involving <tt>show</tt> and <tt>read</tt> has
an ambiguous type since its type is
<I>forall a. </I><tt>Show</tt><I> a, </I><tt>Read</tt><I> a =></I><tt>String</tt>.<p>
Ambiguous types can only be circumvented by
input from the user. One way is through the use of <I>expression
type-signatures
</I>as described in Section <a href="exps.html#expression-type-sigs">3.16</a>.
For example, for the ambiguous expression given earlier, one could
write:
<tt><br>
<br>
let x = read "..." in show (x::Bool)<br>
<br>
</tt>which disambiguates the type.<p>
Occasionally, an otherwise ambiguous expression needs to be made
the same type as some variable, rather than being given a fixed
type with an expression type-signature. This is the purpose
of the function <tt>asTypeOf</tt> (Appendix <a href="standard-prelude.html#stdprelude">A</a>):
<I>x</I> <tt>`asTypeOf`</tt> <I>y</I> has the value of <I>x</I>, but <I>x</I> and <I>y</I> are
forced to have the same type. For example,
<tt><br>
<br>
approxSqrt x = encodeFloat 1 (exponent x `div` 2) `asTypeOf` x<br>
<br>
</tt>(See Section <a href="basic.html#coercion">6.4.6</a>.)<p>
Ambiguities in the class <tt>Num
</tt>are most common, so Haskell
provides another way to resolve them---with a
<I>default declaration</I>:
<p>
<tt>default (</tt><I>t</I><sub><I>1</I></sub><I> </I><tt>,</tt><I> ... </I><tt>,</tt><I> t</I><sub><I>n</I></sub><tt>)
<p>
</tt>where <I>n>=0</I>, and each
<I>t</I><sub><I>i</I></sub> must be a monotype for which <tt>Num </tt><I>t</I><sub><I>i</I></sub> holds.
In situations where an ambiguous type is discovered, an
ambiguous type variable is defaultable if at least one
of its classes is a numeric class (that is, <tt>Num</tt> or a subclass of
<tt>Num</tt>) and if all of its classes
are defined in the Prelude or a standard library
(Figures <a href="basic.html#basic-numeric-1">6</a>--<a href="basic.html#basic-numeric-2">7</a>,
pages --
show the numeric classes, and
Figure <a href="basic.html#standard-classes">5</a>, page ,
shows the classes defined in the Prelude.)
Each defaultable variable is replaced by the first type in the
default list that is an instance of all the ambiguous variable's classes.
It is a static error if no such type is found.<p>
Only one default declaration is permitted per module, and its effect
is limited to that module. If no default declaration is given in a
module then it assumed to be:
<tt><br>
<br>
default (Integer, Double)<br>
<br>
</tt>The empty default declaration, <tt>default ()</tt>, turns off all defaults in a module.<a name="nested"></a><p>
<a name="sect4.4"></a>
<h3>4.4<tt> </tt>Nested Declarations</h3>
<p>
The following declarations may be used in any declaration list,
including the top level of a module.<a name="type-signatures"></a><p>
<a name="sect4.4.1"></a>
<h4>4.4.1<tt> </tt>Type Signatures</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
gendecl </td><td width=20> <tt>-></tt> </td><td width=250> vars <tt>::</tt> [context <tt>=></tt>] type
</td></tr><tr><td>
vars </td><td> <tt>-></tt> </td><td> var<sub>1</sub> <tt>,</tt> ...<tt>,</tt> var<sub>n</sub> </td><td> <tt> </tt>(n>=1)
</td></tr></table>
A type signature specifies types for variables, possibly with respect
to a context. A type signature has the form:
<p>
<I>v</I><sub><I>1</I></sub><I>, ..., v</I><sub><I>n</I></sub><I> </I><tt>::</tt><I> cx </I><tt>=></tt><I> t
<p>
</I>which is equivalent to asserting
<I>v</I><sub><I>i</I></sub><I> </I><tt>::</tt><I> cx </I><tt>=></tt><I> t
</I>for each <I>i</I> from <I>1</I> to <I>n</I>. Each <I>v</I><sub><I>i</I></sub> must have a value binding in
the same declaration list that contains the type signature; i.e. it is
invalid to give a type signature for a variable bound in an
outer scope.
Moreover, it is invalid to give more than one type signature for one
variable, even if the signatures are identical.<p>
As mentioned in Section <a href="decls.html#type-syntax">4.1.2</a>,
every type variable appearing in a signature
is universally quantified over that signature, and hence
the scope of a type variable is limited to the type
signature that contains it. For example, in the following
declarations
<tt><br>
<br>
f :: a -> a<br>
f x = x :: a -- invalid<br>
<br>
</tt>the <tt>a</tt>'s in the two type signatures are quite distinct. Indeed,
these declarations contain a static error, since <tt>x</tt> does not have
type <I>forall a. a</I>. (The type of <tt>x</tt> is dependent on the type of
<tt>f</tt>; there is currently no way in Haskell to specify a signature
for a variable with a dependent type; this is explained in Section
<a href="decls.html#monomorphism">4.5.4</a>.)<p>
If a given program includes a signature
for a variable <I>f</I>, then each use of <I>f</I> is treated as having the
declared type. It is a static error if the same type cannot also be
inferred for the defining occurrence of <I>f</I>.<p>
If a variable <I>f</I> is defined without providing a corresponding type
signature declaration, then each use of <I>f</I> outside its own declaration
group (see Section <a href="decls.html#dependencyanalysis">4.5</a>) is treated as having the
corresponding inferred, or <I>principal</I> type .
However, to ensure that type inference is still possible, the defining
occurrence, and all uses of <I>f</I> within its declaration group must have
the same monomorphic type (from which the principal type is obtained
by generalization, as described in Section <a href="decls.html#generalization">4.5.2</a>).<p>
For example, if we define
<tt><br>
<br>
sqr x = x*x<br>
<br>
</tt>then the principal type is
<tt>sqr</tt><I> :: forall a. </I><tt>Num</tt><I> a =>a ->a</I>,
which allows
applications such as <tt>sqr 5</tt> or <tt>sqr 0.1</tt>. It is also valid to declare
a more specific type, such as
<tt><br>
<br>
sqr :: Int -> Int<br>
<br>
</tt>but now applications such as <tt>sqr 0.1</tt> are invalid. Type signatures such as
<tt><br>
<br>
sqr :: (Num a, Num b) => a -> b -- invalid<br>
sqr :: a -> a -- invalid<br>
<br>
</tt>are invalid, as they are more general than the principal type of <tt>sqr</tt>.<p>
Type signatures can also be used to support
<I>polymorphic recursion</I>.
The following definition is pathological, but illustrates how a type
signature can be used to specify a type more general than the one that
would be inferred:
<tt><br>
<br>
data T a = K (T Int) (T a)<br>
f :: T a -> a<br>
f (K x y) = if f x == 1 then f y else undefined<br>
<br>
</tt>If we remove the signature declaration, the type of <tt>f</tt> will be
inferred as <tt>T Int -> Int</tt> due to the first recursive call for which
the argument to <tt>f</tt> is <tt>T Int</tt>. Polymorphic recursion allows the user
to supply the more general type signature, <tt>T a -> a</tt>.<a name="fixity"></a><p>
<a name="sect4.4.2"></a>
<h4>4.4.2<tt> </tt>Fixity Declarations</h4>
<p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100>
gendecl </td><td width=20> <tt>-></tt> </td><td width=250> fixity [digit] ops
</td></tr><tr><td>
fixity </td><td> <tt>-></tt> </td><td> <tt>infixl</tt> | <tt>infixr</tt> | <tt>infix
</tt></td></tr><tr><td>
ops </td><td> <tt>-></tt> </td><td> op<sub>1</sub> <tt>,</tt> ... <tt>,</tt> op<sub>n</sub> </td><td> <tt> </tt>(n>=1)
</td></tr><tr><td>
op </td><td> <tt>-></tt> </td><td> varop | conop
</td></tr></table>
A fixity declaration gives the fixity and binding
precedence of one or more operators. A fixity declaration may appear anywhere that
a type signature appears and, like a type signature, declares a property of
a particular operator. Also like a type signature,
a fixity declaration can only occur in the same declaration group as
the declaration of the operator itself, and at most one fixity declaration
may be given for any operator. (Class methods are a minor exception;
their fixity declarations can occur either in the class declaration itself
or at top level.)<p>
There are three kinds of fixity, non-, left- and right-associativity
(<tt>infix</tt>, <tt>infixl</tt>, and <tt>infixr</tt>, respectively), and ten precedence
levels, 0 to 9 inclusive (level 0 binds least tightly, and level 9
binds most tightly). If the <I>digit</I> is omitted, level 9 is assumed.
Any operator lacking a fixity declaration
is assumed to be <tt>infixl 9</tt> (See Section <a href="exps.html#expressions">3</a> for more on
the use of fixities).
Table <a href="decls.html#prelude-fixities">2</a> lists the fixities and precedences of
the operators defined in the Prelude.<p>
<div align=center>
<p>
<table border=2>
<tr><td align=right>
Prec- </td><td> Left associative </td><td> Non-associative </td><td> Right associative </td></tr><tr><td align=right>edence </td><td> operators </td><td> operators </td><td> operators </td></tr><tr><td align=right>
9 </td><td> <tt>!!</tt> </td><td> </td><td> <tt>.</tt> </td></tr><tr><td align=right>
8 </td><td> </td><td> </td><td> <tt>^</tt>, <tt>^^</tt>, <tt>**</tt> </td></tr><tr><td align=right>
7 </td><td> <tt>*</tt>, <tt>/</tt>, <tt>`div`</tt>, </td><td> </td><td> </td></tr><tr><td align=right></td><td> <tt>`mod`</tt>, <tt>`rem`</tt>, <tt>`quot`</tt> </td><td> </td><td> </td></tr><tr><td align=right>
6 </td><td> <tt>+</tt>, <tt>-</tt> </td><td> </td><td> </td></tr><tr><td align=right>
5 </td><td> </td><td> </td><td> <tt>:</tt>, <tt>++</tt> </td></tr><tr><td align=right>
4 </td><td> </td><td> <tt>==</tt>, <tt>/=</tt>, <tt><</tt>, <tt><=</tt>, <tt>></tt>, <tt>>=</tt>, </td><td> </td></tr><tr><td align=right></td><td> </td><td> <tt>`elem`</tt>, <tt>`notElem`</tt> </td><td> </td></tr><tr><td align=right>
3 </td><td> </td><td> </td><td> <tt>&&</tt> </td></tr><tr><td align=right>
2 </td><td> </td><td> </td><td> <tt>||</tt> </td></tr><tr><td align=right>
1 </td><td> <tt>>></tt>, <tt>>>=</tt> </td><td> </td><td> </td></tr><tr><td align=right>
0 </td><td> </td><td> </td><td> <tt>$</tt>, <tt>$!</tt>, <tt>`seq`</tt> </td></tr><tr><td align=right>
</td></tr></table>
<p>
<div align=center> <h4>Table 2</h4> </div>
<div align=center><h3>Precedences and fixities of prelude operators</h3></div><a name="prelude-fixities"></a>
</div><p>
Fixity is a property of a particular entity (constructor or variable), just like
its type; fixity is not a property of that entity's <I>name</I>.
For example:
<tt><br>
<br>
module Bar( op ) where<br>
infixr 7 `op`<br>
op = ...<br>
<br>
module Foo where<br>
import qualified Bar<br>
infix 3 `op`<br>
<br>
a `op` b = (a `Bar.op` b) + 1<br>
<br>
f x = let<br>
p `op` q = (p `Foo.op` q) * 2<br>
in ...<br>
<br>
</tt>Here, <tt>`Bar.op`</tt> is <tt>infixr 7</tt>, <tt>`Foo.op`</tt> is <tt>infix 3</tt>, and
the nested definition of <tt>op</tt> in <tt>f</tt>'s right-hand side has the
default fixity of <tt>infixl 9</tt>. (It would also be possible
to give a fixity to the nested definition of <tt>`op`</tt> with a nested
fixity declaration.)<p>
<a name="sect4.4.3"></a>
<h4>4.4.3<tt> </tt>Function and Pattern Bindings</h4>
<a name="function-bindings"></a><a name="pattern-bindings"></a><p>
<table cellspacing=0 cellspacing=0>
<tr><td width=100></td><td width=20></td><td width=250></td></tr><tr></tr><tr></tr><tr></tr><tr><td>
decl </td><td> <tt>-></tt> </td><td> (funlhs | pat<sup>0</sup>) rhs
</td></tr><tr><td>
funlhs </td><td> <tt>-></tt> </td><td> var apat {apat }
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> pat<sup>i+1</sup> varop<sup>(a,i)</sup> pat<sup>i+1</sup>
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> lpat<sup>i</sup> varop<sup>(l,i)</sup> pat<sup>i+1</sup>
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> pat<sup>i+1</sup> varop<sup>(r,i)</sup> rpat<sup>i</sup>
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> <tt>(</tt> funlhs <tt>)</tt> apat {apat }
</td></tr><tr><td>
rhs </td><td> <tt>-></tt> </td><td> <tt>=</tt> exp [<tt>where</tt> decls]
</td></tr><tr><td>
</td><td> <tt>|</tt> </td><td> gdrhs [<tt>where</tt> decls]
</td></tr><tr><td>
gdrhs </td><td> <tt>-></tt> </td><td> gd <tt>=</tt> exp [gdrhs]
</td></tr><tr><td>
gd </td><td> <tt>-></tt> </td><td> <tt>|</tt> exp<sup>0</sup>
</td></tr></table>
We distinguish two cases within this syntax: a <I>pattern binding
</I>occurs when the left hand side is a <I>pat</I><sup><I>0</I></sup>;
otherwise, the binding is called a <I>function
binding</I>. Either binding may appear at the top-level of a module or
within a <tt>where</tt> or <tt>let</tt> construct. <p>
<a name="sect4.4.3.1"></a>
<h5>4.4.3.1<tt> </tt>Function bindings.</h5>
A function binding binds a variable to a function value. The general
form of a function binding for variable <I>x</I> is:
<p>
<table >
<tr><td>
<I>x</I> </td><td> <I>p</I><sub><I>11</I></sub><I> ... p</I><sub><I>1k</I></sub> </td><td> <I>match</I><sub><I>1</I></sub></td></tr><tr><td><I>...</I> </td></tr><tr><td><I>x</I> </td><td> <I>p</I><sub><I>n1</I></sub><I> ... p</I><sub><I>nk</I></sub> </td><td> <I>match</I><sub><I>n</I></sub>
</td></tr></table>
<p>
where each <I>p</I><sub><I>ij</I></sub> is a pattern, and where each <I>match</I><sub><I>i</I></sub> is of the
general form:
<p>
<table >
<tr><td>
<tt>=</tt><I> e</I><sub><I>i</I></sub><I> </I><tt>where {</tt><I> decls</I><sub><I>i</I></sub><I> </I><tt>}
</tt></td></tr></table>
<p>
or
<p>
<table >
<tr><td>
<tt>|</tt><I> g</I><sub><I>i1</I></sub> </td><td> <tt>=</tt><I> e</I><sub><I>i1</I></sub><I> </I> </td></tr><tr><td><I>...</I> </td></tr><tr><td><tt>|</tt><I> g</I><sub><I>im</I><sub><I>i</I></sub></sub> </td><td> <tt>=</tt><I> e</I><sub><I>im</I><sub><I>i</I></sub></sub> </td></tr><tr><td></td><td> <tt>where {</tt><I> decls</I><sub><I>i</I></sub><I> </I><tt>}
</tt></td></tr></table>
<p>
and where <I>n>=1</I>, <I>1<=i<=n</I>, <I>m</I><sub><I>i</I></sub><I>>=1</I>. The former is treated
as shorthand for a particular case of the latter, namely:
<p>
<table >
<tr><td>
<tt>| True =</tt><I> e</I><sub><I>i</I></sub><I> </I><tt>where {</tt><I> decls</I><sub><I>i</I></sub><I> </I><tt>}
</tt></td></tr></table>
<p>
<p>
Note that all clauses defining a function must be contiguous, and the
number of patterns in each clause must be the same. The set of
patterns corresponding to each match must be
<I>linear</I>---no variable is
allowed to appear more than once in the entire set.<p>
Alternative syntax is provided for binding functional values to infix
operators. For example, these two function
definitions are equivalent:
<tt><br>
<br>
plus x y z = x+y+z<br>
x </tt>`<tt>plus</tt>`<tt> y = \ z -> x+y+z<br>
<p>
</tt><table border=2 cellpadding=3>
<tr><td>
<h3>Translation:</h3>
The general binding form for functions is semantically
equivalent to the equation (i.e. simple pattern binding):
<p>
x <tt>= \</tt> x<sub>1</sub> ... x<sub>n</sub> <tt>-> case (</tt>x<sub>1</sub><tt>, </tt>...<tt>, </tt>x<sub>k</sub><tt>) of
</tt><table >
<tr><td>
<tt>(</tt><I>p</I><sub><I>11</I></sub><I>, ..., p</I><sub><I>1k</I></sub><tt>)</tt><I> match</I><sub><I>1</I></sub> </td></tr><tr><td><I>...</I> </td></tr><tr><td><tt>(</tt><I>p</I><sub><I>m1</I></sub><I>, ..., p</I><sub><I>mk</I></sub><tt>)</tt><I> match</I><sub><I>m</I></sub>
</td></tr></table>
<p>
where the <I>x</I><sub><I>i</I></sub> are new identifiers.
</td></tr></table>
<a name="patbind"></a><p>
<a name="sect4.4.3.2"></a>
<h5>4.4.3.2<tt> </tt>Pattern bindings.</h5>
<p>
A pattern binding binds variables to values. A <I>simple</I> pattern
binding has form <I>p = e</I>.
The pattern <I>p</I> is
matched "lazily" as an irrefutable pattern, as if there were an implicit <tt>~</tt> in front
of it. See the translation in
Section <a href="exps.html#let-expressions">3.12</a>.<p>
The <I>general</I> form of a pattern binding is <I>p match</I>, where a
<I>match</I> is the same structure as for function bindings above; in other
words, a pattern binding is:
<p>
<table >
<tr><td align=right>
<I>p</I> </td><td align=center> <tt>|</tt><I> g</I><sub><I>1</I></sub> </td><td> <tt>=</tt><I> e</I><sub><I>1</I></sub> </td></tr><tr><td align=right></td><td align=center> <tt>|</tt><I> g</I><sub><I>2</I></sub> </td><td> <tt>=</tt><I> e</I><sub><I>2</I></sub> </td></tr><tr><td align=right></td><td align=center> <I>...</I> </td></tr><tr><td align=right></td><td align=center> <tt>|</tt><I> g</I><sub><I>m</I></sub> </td><td> <tt>=</tt><I> e</I><sub><I>m</I></sub> </td></tr><tr><td align=right></td><td align=center> <tt>where {</tt><I> decls </I><tt>}
</tt></td></tr></table>
<p>
<p>
<table border=2 cellpadding=3>
<tr><td>
<h3>Translation:</h3>
The pattern binding above is semantically equivalent to this
simple pattern binding:
<p>
<table >
<tr><td>
<I>p</I> </td><td align=center><tt>=</tt></td><td> <tt>let</tt><I> decls </I><tt>in</tt> </td></tr><tr><td></td><td align=center> </td><td> <tt>if </tt><I>g</I><sub><I>1</I></sub><tt> then </tt><I>e</I><sub><I>1</I></sub><tt> else</tt> </td></tr><tr><td></td><td align=center> </td><td> <tt>if </tt><I>g</I><sub><I>2</I></sub><tt> then </tt><I>e</I><sub><I>2</I></sub><tt> else</tt> </td></tr><tr><td></td><td align=center> </td><td> ... </td></tr><tr><td></td><td align=center> </td><td> <tt>if </tt><I>g</I><sub><I>m</I></sub><tt> then </tt><I>e</I><sub><I>m</I></sub><tt> else error "Unmatched pattern"
</tt></td></tr></table>
<p>
</td></tr></table>
<p>
<h3>A note about syntax.</h3> It is usually straightforward
to tell whether a binding is a pattern binding or a function binding,
but the existence of <tt>n+k</tt> patterns sometimes confuses the issue.
Here are four examples:
<tt><br>
<br>
x + 1 = ... -- Function binding, defines (+)<br>
<br>
(x + 1) = ... -- Pattern binding, defines x<br>
<br>
(x + 1) * y = ... -- Function binding, defines (*)<br>
<br>
(x + 1) 2 = ... -- Function binding, defines (+)<br>
<br>
</tt>The first two can be distinguished because a pattern binding
has a <I>pat</I><sup><I>0</I></sup> on the left hand side, not a <I>pat</I> --- the former cannot
be an unparenthesised <tt>n+k</tt> pattern.<a name="dependencyanalysis"></a><p>
<a name="sect4.5"></a>
<h3>4.5<tt> </tt>Static Semantics of Function and Pattern Bindings</h3>
<p>
The static semantics of the function and pattern bindings of
a <tt>let</tt> expression or <tt>where</tt> clause
are discussed in this section.<a name="depend-anal"></a><p>
<a name="sect4.5.1"></a>
<h4>4.5.1<tt> </tt>Dependency Analysis</h4>
<p>
In general the static semantics are given by the
normal Hindley-Milner inference rules.
A <I>dependency
analysis transformation</I> is first performed
to enhance polymorphism.
Two variables bound by value declarations are in the
same <I>declaration group</I> if either
<OL><LI>
they are bound by the same pattern binding, or
<LI>
their bindings are mutually recursive (perhaps via some
other declarations that are also part of the group).
</OL>
Application of the following
rules causes each <tt>let</tt> or <tt>where</tt> construct (including the <tt>where
</tt>defining the top level bindings in a module) to bind only the
variables of a single declaration group, thus capturing the required
dependency analysis: (A similar transformation is described in
Peyton Jones' book [<a href="haskell.html#$peyton-jones:book">9</a>].)
<OL><LI>The order of declarations in <tt>where</tt>/<tt>let</tt> constructs is irrelevant.
<LI><tt>let {</tt><I>d</I><sub><I>1</I></sub><tt>; </tt><I>d</I><sub><I>2</I></sub><tt>} in </tt><I>e</I> = <tt>let {</tt><I>d</I><sub><I>1</I></sub><tt>} in (let {</tt><I>d</I><sub><I>2</I></sub><tt>} in </tt><I>e</I><tt>)</tt> <br>
(when no identifier bound in <I>d</I><sub><I>2</I></sub> appears free in <I>d</I><sub><I>1</I></sub>)
</OL><a name="generalization"></a><p>
<a name="sect4.5.2"></a>
<h4>4.5.2<tt> </tt>Generalization</h4>
<p>
The Hindley-Milner type system assigns types to a <tt>let</tt>-expression
in two stages.
First, the right-hand side of the declaration is typed, giving a type with
no universal quantification. Second, all type variables that occur in this
type are universally quantified unless they are associated with
bound variables in the type environment;
this is called <I>generalization</I>.
Finally, the body of the <tt>let</tt>-expression is typed.<p>
For example, consider the declaration
<tt><br>
<br>
f x = let g y = (y,y)<br>
in ...<br>
<br>
<br>
</tt>The type of <tt>g</tt>'s definition is
<I>a ->(a,a)</I>. The generalization step
attributes to <tt>g</tt> the polymorphic type
<I>forall a. a ->(a,a)</I>,
after which the typing of the "<tt>...</tt>" part can proceed.<p>
When typing overloaded definitions, all the overloading
constraints from a single declaration group are collected together,
to form the context for the type of each variable declared in the group.
For example, in the definition:
<tt><br>
<br>
f x = let g1 x y = if x>y then show x else g2 y x<br>
g2 p q = g1 q p<br>
in ...<br>
<br>
</tt>The types of the definitions of <tt>g1</tt> and <tt>g2</tt> are both
<I>a ->a -></I><tt>String</tt>, and the accumulated constraints are
<tt>Ord</tt><I> a</I> (arising from the use of <tt>></tt>), and <tt>Show</tt><I> a</I> (arising from the
use of <tt>show</tt>).
The type variables appearing in this collection of constraints are
called the <I>constrained type variables</I>.<p>
The generalization step attributes to both <tt>g1</tt> and <tt>g2</tt> the type
<p>
<I>forall a. (</I><tt>Ord</tt><I> a, </I><tt>Show</tt><I> a) =>a ->a -></I><tt>String
<p>
</tt>Notice that <tt>g2</tt> is overloaded in the same way as <tt>g1</tt> even though the
occurrences of <tt>></tt> and <tt>show</tt> are in the definition of <tt>g1</tt>.<p>
If the programmer supplies explicit type signatures for more than one variable
in a declaration group, the contexts of these signatures must be
identical up to renaming of the type variables.<a name="context-reduction"></a><p>
<a name="sect4.5.3"></a>
<h4>4.5.3<tt> </tt>Context Reduction Errors</h4>
As mentioned in Section <a href="decls.html#type-semantics">4.1.4</a>, the context of a type
may constrain only a type variable, or the application of a type variable
to one or more types. Hence, types produced by
generalization must be expressed in a form in which all context
constraints have be reduced to this "head normal form".
Consider, for example, the
definition:
<tt><br>
<br>
f xs y = xs == [y]<br>
<br>
</tt>Its type is given by
<tt><br>
<br>
f :: Eq a => [a] -> a -> Bool<br>
<br>
</tt>and not
<tt><br>
<br>
f :: Eq [a] => [a] -> a -> Bool<br>
<br>
</tt>Even though the equality is taken at the list type, the context must
be simplified, using the instance declaration for <tt>Eq</tt> on lists,
before generalization. If no such instance is in scope, a static
error occurs.<p>
Here is an example that shows the need for a
constraint of the form <I>C (m t)</I> where m is one of the type
variables being generalized; that is, where the class <I>C</I> applies to a type
expression that is not a type variable or a type constructor.
Consider:
<tt><br>
<br>
f :: (Monad m, Eq (m a)) => a -> m a -> Bool<br>
f x y = x == return y<br>
<br>
</tt>The type of <tt>return</tt> is <tt>Monad m => a -> m a</tt>; the type of <tt>(==)</tt> is
<tt>Eq a => a -> a -> Bool</tt>. The type of <tt>f</tt> should be
therefore <tt>(Monad m, Eq (m a)) => a -> m a -> Bool</tt>, and the context
cannot be simplified further.<p>
The instance declaration derived from a data type <tt>deriving</tt> clause
(see Section <a href="decls.html#derived-decls">4.3.3</a>)
must, like any instance declaration, have a <I>simple</I> context; that is,
all the constraints must be of the form <I>C a</I>, where <I>a</I> is a type variable.
For example, in the type
<tt><br>
<br>
data Apply a b = App (a b) deriving Show<br>
<br>
</tt>the derived Show instance will produce a context <tt>Show (a b)</tt>, which
cannot be reduced and is not simple; thus a static error results.<a name="monomorphism"></a><p>
<a name="sect4.5.4"></a>
<h4>4.5.4<tt> </tt>Monomorphism</h4>
Sometimes it is not possible to generalize over all the type variables
used in the type of the definition.
For example, consider the declaration
<tt><br>
<br>
f x = let g y z = ([x,y], z)<br>
in ...<br>
<br>
</tt>In an environment where <tt>x</tt> has type <I>a</I>,
the type of <tt>g</tt>'s definition is
<I>a ->b -></I><tt>([</tt><I>a</I><tt>]</tt><I>,b</I><tt>)</tt>.
The generalization step attributes to <tt>g</tt> the type
<I>forall b. a ->b -></I><tt>([</tt><I>a</I><tt>]</tt><I>,b</I><tt>)</tt>;
only <I>b</I> can be universally quantified because <I>a</I> occurs in the
type environment.
We say that the type of <tt>g</tt> is <I>monomorphic in the type variable a</I>.<p>
The effect of such monomorphism is that the first argument of all
applications of <tt>g</tt> must be of a single type.
For example, it would be valid for
the "<tt>...</tt>" to be
<tt><br>
<br>
(g True, g False)<br>
<br>
</tt>(which would, incidentally, force <tt>x</tt> to have type <tt>Bool</tt>) but invalid
for it to be
<tt><br>
<br>
(g True, g 'c')<br>
<br>
</tt>In general, a type <I>forall </I><u>u</u><I>. cx =>t
</I>is said to be <I>monomorphic
</I>in the type variable <I>a</I> if <I>a</I> is free in
<I>forall </I><u>u</u><I>. cx =>t</I>.<p>
It is worth noting that the explicit type signatures provided by Haskell
are not powerful enough to express types that include monomorphic type
variables. For example, we cannot write
<tt><br>
<br>
f x = let <br>
g :: a -> b -> ([a],b)<br>
g y z = ([x,y], z)<br>
in ...<br>
<br>
</tt>because that would claim that <tt>g</tt> was polymorphic in both <tt>a</tt> and <tt>b
</tt>(Section <a href="decls.html#type-signatures">4.4.1</a>). In this program, <tt>g</tt> can only be given
a type signature if its first argument is restricted to a type not involving
type variables; for example
<tt><br>
<br>
g :: Int -> b -> ([Int],b)<br>
<br>
</tt>This signature would also cause <tt>x</tt> to have type <tt>Int</tt>.<a name="sect:monomorphism-restriction"></a><p>
<a name="sect4.5.5"></a>
<h4>4.5.5<tt> </tt>The Monomorphism Restriction</h4>
<p>
Haskell places certain extra restrictions on the generalization
step, beyond the standard Hindley-Milner restriction described above,
which further reduces polymorphism in particular cases.<p>
The monomorphism restriction depends on the binding syntax of a
variable. Recall that a variable is bound by either a <I>function
binding</I> or a <I>pattern binding</I>, and that a <I>simple</I> pattern
binding is a pattern binding in which the pattern consists of only a
single variable (Section <a href="decls.html#pattern-bindings">4.4.3</a>).<p>
The following two rules define the monomorphism restriction:
<table border=2 cellpadding=3>
<tr><td>
<h3>The monomorphism restriction</h3><p>
<DL><DT>
Rule 1.
</DT>
We say that a given declaration group is <I>unrestricted</I> if and only if:
<DL><DT>
(a):
</DT>
every variable in the group is bound by a function binding or a simple
pattern binding (Section <a href="decls.html#patbind">4.4.3</a>), <I>and
</I><DT>
(b):
</DT>
an explicit type signature is given for every variable in the group
that is bound by simple pattern binding.
</DL>
The usual Hindley-Milner restriction on polymorphism is that
only type variables free in the environment may be generalized.
In addition, <I>the constrained type variables of
a restricted declaration group may not be generalized
</I>in the generalization step for that group.
(Recall that a type variable is constrained if it must belong
to some type class; see Section <a href="decls.html#generalization">4.5.2</a>.)<p>
<DT>
Rule 2.
</DT>
Any monomorphic type variables that remain when type inference for
an entire module is complete, are considered <I>ambiguous</I>,
and are resolved to particular types using the defaulting
rules (Section <a href="decls.html#default-decls">4.3.4</a>).
</DL>
</td></tr></table>
<p>
<h3>Motivation</h3><p>
Rule 1 is required for two reasons, both of which are fairly subtle.
<UL><LI>
<I>Rule 1 prevents computations from being unexpectedly repeated.
</I>For example, <tt>genericLength</tt> is a standard function (in library <tt>List</tt>) whose
type is given by
<tt><br>
<br>
genericLength :: Num a => [b] -> a<br>
<br>
</tt>Now consider the following expression:
<tt><br>
<br>
let { len = genericLength xs } in (len, len)<br>
<br>
</tt>It looks as if <tt>len</tt> should be computed only once, but without Rule 1 it might
be computed twice, once at each of two different overloadings. If the
programmer does actually wish the computation to be repeated, an explicit
type signature may be added:
<tt><br>
<br>
let { len :: Num a => a; len = genericLength xs } in (len, len)<br>
<br>
<p>
</tt><LI><I>Rule 1 prevents ambiguity.</I> For example, consider the declaration
group
<tt><br>
<br>
[(n,s)] = reads t<br>
<br>
</tt>Recall that <tt>reads</tt> is a standard function whose type is given by the
signature
<tt><br>
<br>
reads :: (Read a) => String -> [(a,String)]<br>
<br>
</tt>Without Rule 1, <tt>n</tt> would be assigned the
type <I>forall a. </I><tt>Read</tt><I> a =>a</I>
and <tt>s</tt> the type <I>forall a.</I> <tt>Read</tt><I> a</I> <I>=></I><tt>String</tt>.
The latter is an invalid type, because it is inherently ambiguous.
It is not possible to determine at what overloading to use <tt>s</tt>, nor
can this be solved by adding a type signature for <tt>s</tt>.
Hence, when <I>non-simple</I> pattern bindings
are used (Section <a href="decls.html#patbind">4.4.3</a>), the types inferred are
always monomorphic in their constrained type variables, irrespective of whether
a type signature is provided.
In this case, both <tt>n</tt> and <tt>s</tt> are monomorphic in <I>a</I>.<p>
The same constraint applies to pattern-bound functions. For example, in
<tt><br>
<br>
(f,g) = ((+),(-))<br>
<br>
</tt>both <tt>f</tt> and <tt>g</tt> are monomorphic regardless of any type
signatures supplied for <tt>f</tt> or <tt>g</tt>.
</UL><p>
Rule 2 is required because there is no way to enforce monomorphic use
of an <I>exported</I> binding, except by performing type inference on modules
outside the current module. Rule 2 states that the exact types of all
the variables bound in a module must be determined by that module alone, and not
by any modules that import it.
<tt><br>
<br>
module M1(len1) where<br>
default( Int, Double )<br>
len1 = genericLength "Hello"<br>
<br>
module M2 where<br>
import M1(len1)<br>
len2 = (2*len1) :: Rational<br>
<br>
</tt>When type inference on module <tt>M1</tt> is complete, <tt>len1</tt> has the
monomorphic type <tt>Num a => a</tt> (by Rule 1). Rule 2 now states that
the monomorphic type variable <tt>a</tt> is ambiguous, and must be resolved using
the defaulting rules of Section <a href="decls.html#default-decls">4.3.4</a>.
Hence, <tt>len1</tt> gets type <tt>Int</tt>, and its use in <tt>len2</tt> is type-incorrect.
(If the above code is actually what is wanted, a type signature on
<tt>len1</tt> would solve the problem.)<p>
This issue does not arise for nested bindings, because their entire scope is
visible to the compiler.<p>
<h3>Consequences</h3><p>
The monomorphism rule has a number of consequences for the programmer.
Anything defined with function syntax usually
generalizes as a function is expected to. Thus in
<tt><br>
<br>
f x y = x+y<br>
<br>
</tt>the function <tt>f</tt> may be used at any overloading in class <tt>Num</tt>.
There is no danger of recomputation here. However, the same function
defined with pattern syntax:
<tt><br>
<br>
f = \x -> \y -> x+y<br>
<br>
</tt>requires a type signature if <tt>f</tt> is to be fully overloaded.
Many functions are most naturally defined using simple pattern
bindings; the user must be careful to affix these with type signatures
to retain full overloading. The standard prelude contains many
examples of this:
<tt><br>
<br>
sum :: (Num a) => [a] -> a<br>
sum = foldl (+) 0 <br>
<br>
<p>
</tt>Rule 1 applies to both top-level and nested definitions. Consider
<tt><br>
<br>
module M where<br>
len1 = genericLength "Hello"<br>
len2 = (2*len1) :: Rational<br>
<br>
</tt>Here, type inference finds that <tt>len1</tt> has the monomorphic type (<tt>Num a => a</tt>);
and the type variable <tt>a</tt> is resolved to <tt>Rational</tt> when performing type
inference on <tt>len2</tt>.<a name="kindinference"></a><p>
<a name="sect4.6"></a>
<h3>4.6<tt> </tt>Kind Inference</h3>
<p>
This section describes the rules that are used to perform <I>kind
inference</I>, i.e. to calculate a suitable kind for each type
constructor and class appearing in a given
program.<p>
The first step in the kind inference process is to arrange the set of
datatype, synonym, and class definitions into dependency groups. This can
be achieved in much the same way as the dependency analysis for value
declarations that was described in Section <a href="decls.html#dependencyanalysis">4.5</a>.
For example, the following program fragment includes the definition
of a datatype constructor <tt>D</tt>, a synonym <tt>S</tt> and a class <tt>C</tt>, all of
which would be included in the same dependency group:
<tt><br>
<br>
data C a => D a = Foo (S a)<br>
type S a = [D a]<br>
class C a where<br>
bar :: a -> D a -> Bool<br>
<br>
</tt>The kinds of variables, constructors, and classes within each group
are determined using standard techniques of type inference and
kind-preserving unification [<a href="haskell.html#$jones:cclasses">6</a>]. For example, in the
definitions above, the parameter <tt>a</tt> appears as an argument of the
function constructor <tt>(->)</tt> in the type of <tt>bar</tt> and hence must
have kind *. It follows that both <tt>D</tt> and <tt>S</tt> must have
kind *->* and that every instance of class <tt>C</tt> must
have kind *.<p>
It is possible that some parts of an inferred kind may not be fully
determined by the corresponding definitions; in such cases, a default
of * is assumed. For example, we could assume an arbitrary kind
<font face="symbol">k</font> for the <tt>a</tt> parameter in each of the following examples:
<tt><br>
<br>
data App f a = A (f a)<br>
data Tree a = Leaf | Fork (Tree a) (Tree a)<br>
<br>
</tt>This would give kinds
(<font face="symbol">k</font>->*)-><font face="symbol">k</font>->* and
<font face="symbol">k</font>->* for <tt>App</tt> and <tt>Tree</tt>, respectively, for any
kind <font face="symbol">k</font>, and would require an extension to allow polymorphic
kinds. Instead, using the default binding <font face="symbol">k</font>=*, the
actual kinds for these two constructors are
(*->*)->*->* and
*->*, respectively.<p>
Defaults are applied to each dependency group without consideration of
the ways in which particular type constructor constants or classes are
used in later dependency groups or elsewhere in the program. For example,
adding the following definition to those above do not influence the
kind inferred for <tt>Tree</tt> (by changing it to
(*->*)->*, for instance), and instead
generates a static error because the kind of <tt>[]</tt>, *->*,
does not match the kind * that is expected for an argument of <tt>Tree</tt>:
<tt><br>
<br>
type FunnyTree = Tree [] -- invalid<br>
<br>
</tt>This is important because it ensures that each constructor and class are
used consistently with the same kind whenever they are in scope.<p>
<hr><i>The Haskell 98 Report</i><br><a href="index.html">top</a> | <a href="exps.html">back</a> | <a href="modules.html">next</a> | <a href="index98.html">contents</a> | <a href="prelude-index.html">function index</a> <br><font size=2>1 February, 1999</font>
<p>
|