1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
{-# LANGUAGE BangPatterns, ScopedTypeVariables #-}
-- |An efficient implementation of 'Data.Graph.Inductive.Graph.Graph'
-- using big-endian patricia tree (i.e. "Data.IntMap").
--
-- This module provides the following specialised functions to gain
-- more performance, using GHC's RULES pragma:
--
-- * 'Data.Graph.Inductive.Graph.insNode'
--
-- * 'Data.Graph.Inductive.Graph.insEdge'
--
-- * 'Data.Graph.Inductive.Graph.gmap'
--
-- * 'Data.Graph.Inductive.Graph.nmap'
--
-- * 'Data.Graph.Inductive.Graph.emap'
module Data.Graph.Inductive.PatriciaTree
( Gr
, UGr
)
where
import Data.Graph.Inductive.Graph
import Data.IntMap (IntMap)
import qualified Data.IntMap as IM
import Data.List
import Data.Maybe
import Control.Arrow(second)
newtype Gr a b = Gr (GraphRep a b)
type GraphRep a b = IntMap (Context' a b)
type Context' a b = (IntMap [b], a, IntMap [b])
type UGr = Gr () ()
instance Graph Gr where
-- required members
empty = Gr IM.empty
isEmpty (Gr g) = IM.null g
match = matchGr
mkGraph vs es = (insEdges' . insNodes vs) empty
where
insEdges' g = foldl' (flip insEdge) g es
labNodes (Gr g) = [ (node, label)
| (node, (_, label, _)) <- IM.toList g ]
-- overriding members for efficiency
noNodes (Gr g) = IM.size g
nodeRange (Gr g)
| IM.null g = (0, 0)
| otherwise = (ix (IM.minViewWithKey g), ix (IM.maxViewWithKey g))
where
ix = fst . fst . fromJust
labEdges (Gr g) = do (node, (_, _, s)) <- IM.toList g
(next, labels) <- IM.toList s
label <- labels
return (node, next, label)
instance DynGraph Gr where
(p, v, l, s) & (Gr g)
= let !g1 = IM.insert v (fromAdj p, l, fromAdj s) g
!g2 = addSucc g1 v p
!g3 = addPred g2 v s
in
Gr g3
matchGr :: Node -> Gr a b -> Decomp Gr a b
matchGr node (Gr g)
= case IM.lookup node g of
Nothing
-> (Nothing, Gr g)
Just (p, label, s)
-> let !g1 = IM.delete node g
!p' = IM.delete node p
!s' = IM.delete node s
!g2 = clearPred g1 node (IM.keys s')
!g3 = clearSucc g2 node (IM.keys p')
in
(Just (toAdj p', node, label, toAdj s), Gr g3)
{-# RULES
"insNode/Data.Graph.Inductive.PatriciaTree" insNode = fastInsNode
#-}
fastInsNode :: LNode a -> Gr a b -> Gr a b
fastInsNode (v, l) (Gr g) = g' `seq` Gr g'
where
g' = IM.insert v (IM.empty, l, IM.empty) g
{-# RULES
"insEdge/Data.Graph.Inductive.PatriciaTree" insEdge = fastInsEdge
#-}
fastInsEdge :: LEdge b -> Gr a b -> Gr a b
fastInsEdge (v, w, l) (Gr g) = g2 `seq` Gr g2
where
g1 = IM.adjust addSucc' v g
g2 = IM.adjust addPred' w g1
addSucc' (ps, l', ss) = (ps, l', IM.insertWith addLists w [l] ss)
addPred' (ps, l', ss) = (IM.insertWith addLists v [l] ps, l', ss)
{-# RULES
"gmap/Data.Graph.Inductive.PatriciaTree" gmap = fastGMap
#-}
fastGMap :: forall a b c d. (Context a b -> Context c d) -> Gr a b -> Gr c d
fastGMap f (Gr g) = Gr (IM.mapWithKey f' g)
where
f' :: Node -> Context' a b -> Context' c d
f' = ((fromContext . f) .) . toContext
{-# RULES
"nmap/Data.Graph.Inductive.PatriciaTree" nmap = fastNMap
#-}
fastNMap :: forall a b c. (a -> c) -> Gr a b -> Gr c b
fastNMap f (Gr g) = Gr (IM.map f' g)
where
f' :: Context' a b -> Context' c b
f' (ps, a, ss) = (ps, f a, ss)
{-# RULES
"emap/Data.Graph.Inductive.PatriciaTree" emap = fastEMap
#-}
fastEMap :: forall a b c. (b -> c) -> Gr a b -> Gr a c
fastEMap f (Gr g) = Gr (IM.map f' g)
where
f' :: Context' a b -> Context' a c
f' (ps, a, ss) = (IM.map (map f) ps, a, IM.map (map f) ss)
toAdj :: IntMap [b] -> Adj b
toAdj = concatMap expand . IM.toList
where
expand (n,ls) = map (flip (,) n) ls
fromAdj :: Adj b -> IntMap [b]
fromAdj = IM.fromListWith addLists . map (second return . swap)
toContext :: Node -> Context' a b -> Context a b
toContext v (ps, a, ss)
= (toAdj ps, v, a, toAdj ss)
fromContext :: Context a b -> Context' a b
fromContext (ps, _, a, ss)
= (fromAdj ps, a, fromAdj ss)
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
-- A version of @++@ where order isn't important, so @xs ++ [x]@
-- becomes @x:xs@. Used when we have to have a function of type @[a]
-- -> [a] -> [a]@ but one of the lists is just going to be a single
-- element (and it isn't possible to tell which).
addLists :: [a] -> [a] -> [a]
addLists [a] as = a : as
addLists as [a] = a : as
addLists xs ys = xs ++ ys
addSucc :: GraphRep a b -> Node -> [(b, Node)] -> GraphRep a b
addSucc g _ [] = g
addSucc g v ((l, p) : rest) = addSucc g' v rest
where
g' = IM.adjust f p g
f (ps, l', ss) = (ps, l', IM.insertWith addLists v [l] ss)
addPred :: GraphRep a b -> Node -> [(b, Node)] -> GraphRep a b
addPred g _ [] = g
addPred g v ((l, s) : rest) = addPred g' v rest
where
g' = IM.adjust f s g
f (ps, l', ss) = (IM.insertWith addLists v [l] ps, l', ss)
clearSucc :: GraphRep a b -> Node -> [Node] -> GraphRep a b
clearSucc g _ [] = g
clearSucc g v (p:rest) = clearSucc g' v rest
where
g' = IM.adjust f p g
f (ps, l, ss) = (ps, l, IM.delete v ss)
clearPred :: GraphRep a b -> Node -> [Node] -> GraphRep a b
clearPred g _ [] = g
clearPred g v (s:rest) = clearPred g' v rest
where
g' = IM.adjust f s g
f (ps, l, ss) = (IM.delete v ps, l, ss)
|