1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
-- Find Dominators of a graph.
--
-- Author: Bertram Felgenhauer <int-e@gmx.de>
--
-- Implementation based on
-- Keith D. Cooper, Timothy J. Harvey, Ken Kennedy,
-- "A Simple, Fast Dominance Algorithm",
-- (http://citeseer.ist.psu.edu/cooper01simple.html)
module Data.Graph.Inductive.Query.Dominators (
dom,
iDom
) where
import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Query.DFS
import Data.Tree (Tree(..))
import qualified Data.Tree as T
import Data.Array
import Data.IntMap (IntMap)
import qualified Data.IntMap as I
-- | return immediate dominators for each node of a graph, given a root
iDom :: Graph gr => gr a b -> Node -> [(Node,Node)]
iDom g root = let (result, toNode, _) = idomWork g root
in map (\(a, b) -> (toNode ! a, toNode ! b)) (assocs result)
-- | return the set of dominators of the nodes of a graph, given a root
dom :: Graph gr => gr a b -> Node -> [(Node,[Node])]
dom g root = let
(iDom, toNode, fromNode) = idomWork g root
dom' = getDom toNode iDom
nodes' = nodes g
rest = I.keys (I.filter (-1 ==) fromNode)
in
[(toNode ! i, dom' ! i) | i <- range (bounds dom')] ++
[(n, nodes') | n <- rest]
-- internal node type
type Node' = Int
-- array containing the immediate dominator of each node, or an approximation
-- thereof. the dominance set of a node can be found by taking the union of
-- {node} and the dominance set of its immediate dominator.
type IDom = Array Node' Node'
-- array containing the list of predecessors of each node
type Preds = Array Node' [Node']
-- arrays for translating internal nodes back to graph nodes and back
type ToNode = Array Node' Node
type FromNode = IntMap Node'
idomWork :: Graph gr => gr a b -> Node -> (IDom, ToNode, FromNode)
idomWork g root = let
-- use depth first tree from root do build the first approximation
trees@(~[tree]) = dff [root] g
-- relabel the tree so that paths from the root have increasing nodes
(s, ntree) = numberTree 0 tree
-- the approximation iDom0 just maps each node to its parent
iDom0 = array (1, s-1) (tail $ treeEdges (-1) ntree)
-- fromNode translates graph nodes to relabeled (internal) nodes
fromNode = I.unionWith const (I.fromList (zip (T.flatten tree) (T.flatten ntree))) (I.fromList (zip (nodes g) (repeat (-1))))
-- toNode translates internal nodes to graph nodes
toNode = array (0, s-1) (zip (T.flatten ntree) (T.flatten tree))
preds = array (1, s-1) [(i, filter (/= -1) (map (fromNode I.!)
(pre g (toNode ! i)))) | i <- [1..s-1]]
-- iteratively improve the approximation to find iDom.
iDom = fixEq (refineIDom preds) iDom0
in
if null trees then error "Dominators.idomWork: root not in graph"
else (iDom, toNode, fromNode)
-- for each node in iDom, find the intersection of all its predecessor's
-- dominating sets, and update iDom accordingly.
refineIDom :: Preds -> IDom -> IDom
refineIDom preds iDom = fmap (foldl1 (intersect iDom)) preds
-- find the intersection of the two given dominance sets.
intersect :: IDom -> Node' -> Node' -> Node'
intersect iDom a b = case a `compare` b of
LT -> intersect iDom a (iDom ! b)
EQ -> a
GT -> intersect iDom (iDom ! a) b
-- convert an IDom to dominance sets. we translate to graph nodes here
-- because mapping later would be more expensive and lose sharing.
getDom :: ToNode -> IDom -> Array Node' [Node]
getDom toNode iDom = let
res = array (0, snd (bounds iDom)) ((0, [toNode ! 0]) :
[(i, toNode ! i : res ! (iDom ! i)) | i <- range (bounds iDom)])
in
res
-- relabel tree, labeling vertices with consecutive numbers in depth first order
numberTree :: Node' -> Tree a -> (Node', Tree Node')
numberTree n (Node _ ts) = let (n', ts') = numberForest (n+1) ts
in (n', Node n ts')
-- same as numberTree, for forests.
numberForest :: Node' -> [Tree a] -> (Node', [Tree Node'])
numberForest n [] = (n, [])
numberForest n (t:ts) = let (n', t') = numberTree n t
(n'', ts') = numberForest n' ts
in (n'', t':ts')
-- return the edges of the tree, with an added dummy root node.
treeEdges :: a -> Tree a -> [(a,a)]
treeEdges a (Node b ts) = (b,a) : concatMap (treeEdges b) ts
-- find a fixed point of f, iteratively
fixEq :: Eq a => (a -> a) -> a -> a
fixEq f v | v' == v = v
| otherwise = fixEq f v'
where v' = f v
{-
:m +Data.Graph.Inductive
let g0 = mkGraph [(i,()) | i <- [0..4]] [(a,b,()) | (a,b) <- [(0,1),(1,2),(0,3),(3,2),(4,0)]] :: Gr () ()
let g1 = mkGraph [(i,()) | i <- [0..4]] [(a,b,()) | (a,b) <- [(0,1),(1,2),(2,3),(1,3),(3,4)]] :: Gr () ()
let g2,g3,g4 :: Int -> Gr () (); g2 n = mkGraph [(i,()) | i <- [0..n-1]] ([(a,a+1,()) | a <- [0..n-2]] ++ [(a,a+2,()) | a <- [0..n-3]]); g3 n =mkGraph [(i,()) | i <- [0..n-1]] ([(a,a+2,()) | a <- [0..n-3]] ++ [(a,a+1,()) | a <- [0..n-2]]); g4 n =mkGraph [(i,()) | i <- [0..n-1]] ([(a+2,a,()) | a <- [0..n-3]] ++ [(a+1,a,()) | a <- [0..n-2]])
:m -Data.Graph.Inductive
-}
|