File: Basic.hs

package info (click to toggle)
haskell-fgl 5.8.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 348 kB
  • sloc: haskell: 3,121; makefile: 3
file content (133 lines) | stat: -rw-r--r-- 4,573 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
-- (c) 1999 - 2002 by Martin Erwig [see file COPYRIGHT]
-- | Basic Graph Algorithms
module Data.Graph.Inductive.Basic
(
    -- * Graph Operations
    grev,
    undir,unlab,
    gsel, gfold,
    -- * Filter Operations
    efilter,elfilter,
    -- * Predicates and Classifications
    hasLoop,isSimple,
    -- * Tree Operations
    postorder, postorderF, preorder, preorderF
)
where


import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Internal.Thread (Collect, Split, SplitM, threadList,
                                             threadMaybe)

import Data.List (nub)
import Data.Tree

-- | Reverse the direction of all edges.
grev :: (DynGraph gr) => gr a b -> gr a b
grev = gmap (\(p,v,l,s)->(s,v,l,p))

-- | Make the graph undirected, i.e. for every edge from A to B, there
-- exists an edge from B to A.
undir :: (Eq b,DynGraph gr) => gr a b -> gr a b
undir = gmap (\(p,v,l,s)->let ps = nub (p++s) in (ps,v,l,ps))
-- this version of undir considers edge lables and keeps edges with
-- different labels, an alternative is the definition below:
--   undir = gmap (\(p,v,l,s)->
--           let ps = nubBy (\x y->snd x==snd y) (p++s) in (ps,v,l,ps))

-- | Remove all labels.
unlab :: (DynGraph gr) => gr a b -> gr () ()
unlab = gmap (\(p,v,_,s)->(unlabAdj p,v,(),unlabAdj s))
        where unlabAdj = map (\(_,v)->((),v))
-- alternative:
--    unlab = nmap (\_->()) . emap (\_->())

-- | Return all 'Context's for which the given function returns 'True'.
gsel :: (Graph gr) => (Context a b -> Bool) -> gr a b -> [Context a b]
gsel p = ufold (\c cs->if p c then c:cs else cs) []


-- filter operations
--
-- efilter  : filter based on edge property
-- elfilter : filter based on edge label property
--

-- | Filter based on edge property.
efilter :: (DynGraph gr) => (LEdge b -> Bool) -> gr a b -> gr a b
efilter f = ufold cfilter empty
            where cfilter (p,v,l,s) g = (p',v,l,s') & g
                   where p' = filter (\(b,u)->f (u,v,b)) p
                         s' = filter (\(b,w)->f (v,w,b)) s

-- | Filter based on edge label property.
elfilter :: (DynGraph gr) => (b -> Bool) -> gr a b -> gr a b
elfilter f = efilter (\(_,_,b)->f b)


-- some predicates and classifications
--

-- | 'True' if the graph has any edges of the form (A, A).
hasLoop :: (Graph gr) => gr a b -> Bool
hasLoop = not . null . gsel (\c->node' c `elem` suc' c)

-- | The inverse of 'hasLoop'.
isSimple :: (Graph gr) => gr a b -> Bool
isSimple = not . hasLoop

threadGraph :: (Graph gr) => (Context a b -> r -> t)
               -> Split (gr a b) (Context a b) r -> SplitM (gr a b) Node t
threadGraph f c = threadMaybe f c match

-- gfold1 f d b u = threadGraph (\c->d (labNode' c)) (\c->gfoldn f d b u (f c))
gfold1 :: (Graph gr) => (Context a b -> [Node]) -> (Context a b -> r -> t)
          -> Collect (Maybe t) r -> SplitM (gr a b) Node t
gfold1 f d b = threadGraph d (gfoldn f d b . f)

gfoldn :: (Graph gr) => (Context a b -> [Node]) -> (Context a b -> r -> t)
          -> Collect (Maybe t) r -> [Node] -> gr a b -> (r, gr a b)
gfoldn f d b = threadList b (gfold1 f d b)

-- gfold :: ((Context a b) -> [Node]) -> ((Node,a) -> c -> d) ->
--          (Maybe d -> c -> c) -> c -> [Node] -> Graph a b -> c
-- gfold f d b u l g = fst (gfoldn f d b u l g)

-- type Dir a b    = (Context a b) -> [Node]  -- direction of fold
-- type Dagg a b c = (Node,a) -> b -> c       -- depth aggregation
-- type Bagg a b   = (Maybe a -> b -> b,b)    -- breadth/level aggregation
--
-- gfold :: (Dir a b) -> (Dagg a c d) -> (Bagg d c) -> [Node] -> Graph a b -> c
-- gfold f d (b,u) l g = fst (gfoldn f d b u l g)

-- | Directed graph fold.
gfold :: (Graph gr) =>   (Context a b -> [Node])    -- ^ direction of fold
        -> (Context a b -> c -> d)    -- ^ depth aggregation
        -> (Maybe d -> c -> c, c)      -- ^ breadth\/level aggregation
        -> [Node]
        -> gr a b
        -> c
gfold f d b l g = fst (gfoldn f d b l g)

-- not finished yet ...
--
-- undirBy :: (b -> b -> b) -> Graph a b -> Graph a b
-- undirBy = gmap (\(p,v,l,s)->let ps = nub (p++s) in (ps,v,l,ps))

-- | Flatten a 'Tree', returning the elements in post-order.
postorder :: Tree a -> [a]
postorder (Node v ts) = postorderF ts ++ [v]

-- | Flatten multiple 'Tree's in post-order.
postorderF :: [Tree a] -> [a]
postorderF = concatMap postorder

-- | Flatten a 'Tree', returning the elements in pre-order.  Equivalent to
--'flatten' in 'Data.Tree'.
preorder :: Tree a -> [a]
preorder = flatten

-- | Flatten multiple 'Tree's in pre-order.
preorderF :: [Tree a] -> [a]
preorderF = concatMap preorder