1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
-- (c) 1999 - 2002 by Martin Erwig [see file COPYRIGHT]
-- | Basic Graph Algorithms
module Data.Graph.Inductive.Basic
(
-- * Graph Operations
grev,
undir,unlab,
gsel, gfold,
-- * Filter Operations
efilter,elfilter,
-- * Predicates and Classifications
hasLoop,isSimple,
-- * Tree Operations
postorder, postorderF, preorder, preorderF
)
where
import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Internal.Thread (Collect, Split, SplitM, threadList,
threadMaybe)
import Data.List (nub)
import Data.Tree
-- | Reverse the direction of all edges.
grev :: (DynGraph gr) => gr a b -> gr a b
grev = gmap (\(p,v,l,s)->(s,v,l,p))
-- | Make the graph undirected, i.e. for every edge from A to B, there
-- exists an edge from B to A.
undir :: (Eq b,DynGraph gr) => gr a b -> gr a b
undir = gmap (\(p,v,l,s)->let ps = nub (p++s) in (ps,v,l,ps))
-- this version of undir considers edge lables and keeps edges with
-- different labels, an alternative is the definition below:
-- undir = gmap (\(p,v,l,s)->
-- let ps = nubBy (\x y->snd x==snd y) (p++s) in (ps,v,l,ps))
-- | Remove all labels.
unlab :: (DynGraph gr) => gr a b -> gr () ()
unlab = gmap (\(p,v,_,s)->(unlabAdj p,v,(),unlabAdj s))
where unlabAdj = map (\(_,v)->((),v))
-- alternative:
-- unlab = nmap (\_->()) . emap (\_->())
-- | Return all 'Context's for which the given function returns 'True'.
gsel :: (Graph gr) => (Context a b -> Bool) -> gr a b -> [Context a b]
gsel p = ufold (\c cs->if p c then c:cs else cs) []
-- filter operations
--
-- efilter : filter based on edge property
-- elfilter : filter based on edge label property
--
-- | Filter based on edge property.
efilter :: (DynGraph gr) => (LEdge b -> Bool) -> gr a b -> gr a b
efilter f = ufold cfilter empty
where cfilter (p,v,l,s) g = (p',v,l,s') & g
where p' = filter (\(b,u)->f (u,v,b)) p
s' = filter (\(b,w)->f (v,w,b)) s
-- | Filter based on edge label property.
elfilter :: (DynGraph gr) => (b -> Bool) -> gr a b -> gr a b
elfilter f = efilter (\(_,_,b)->f b)
-- some predicates and classifications
--
-- | 'True' if the graph has any edges of the form (A, A).
hasLoop :: (Graph gr) => gr a b -> Bool
hasLoop = not . null . gsel (\c->node' c `elem` suc' c)
-- | The inverse of 'hasLoop'.
isSimple :: (Graph gr) => gr a b -> Bool
isSimple = not . hasLoop
threadGraph :: (Graph gr) => (Context a b -> r -> t)
-> Split (gr a b) (Context a b) r -> SplitM (gr a b) Node t
threadGraph f c = threadMaybe f c match
-- gfold1 f d b u = threadGraph (\c->d (labNode' c)) (\c->gfoldn f d b u (f c))
gfold1 :: (Graph gr) => (Context a b -> [Node]) -> (Context a b -> r -> t)
-> Collect (Maybe t) r -> SplitM (gr a b) Node t
gfold1 f d b = threadGraph d (gfoldn f d b . f)
gfoldn :: (Graph gr) => (Context a b -> [Node]) -> (Context a b -> r -> t)
-> Collect (Maybe t) r -> [Node] -> gr a b -> (r, gr a b)
gfoldn f d b = threadList b (gfold1 f d b)
-- gfold :: ((Context a b) -> [Node]) -> ((Node,a) -> c -> d) ->
-- (Maybe d -> c -> c) -> c -> [Node] -> Graph a b -> c
-- gfold f d b u l g = fst (gfoldn f d b u l g)
-- type Dir a b = (Context a b) -> [Node] -- direction of fold
-- type Dagg a b c = (Node,a) -> b -> c -- depth aggregation
-- type Bagg a b = (Maybe a -> b -> b,b) -- breadth/level aggregation
--
-- gfold :: (Dir a b) -> (Dagg a c d) -> (Bagg d c) -> [Node] -> Graph a b -> c
-- gfold f d (b,u) l g = fst (gfoldn f d b u l g)
-- | Directed graph fold.
gfold :: (Graph gr) => (Context a b -> [Node]) -- ^ direction of fold
-> (Context a b -> c -> d) -- ^ depth aggregation
-> (Maybe d -> c -> c, c) -- ^ breadth\/level aggregation
-> [Node]
-> gr a b
-> c
gfold f d b l g = fst (gfoldn f d b l g)
-- not finished yet ...
--
-- undirBy :: (b -> b -> b) -> Graph a b -> Graph a b
-- undirBy = gmap (\(p,v,l,s)->let ps = nub (p++s) in (ps,v,l,ps))
-- | Flatten a 'Tree', returning the elements in post-order.
postorder :: Tree a -> [a]
postorder (Node v ts) = postorderF ts ++ [v]
-- | Flatten multiple 'Tree's in post-order.
postorderF :: [Tree a] -> [a]
postorderF = concatMap postorder
-- | Flatten a 'Tree', returning the elements in pre-order. Equivalent to
--'flatten' in 'Data.Tree'.
preorder :: Tree a -> [a]
preorder = flatten
-- | Flatten multiple 'Tree's in pre-order.
preorderF :: [Tree a] -> [a]
preorderF = concatMap preorder
|