1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
|
{-# LANGUAGE CPP #-}
-- (c) 1999-2005 by Martin Erwig [see file COPYRIGHT]
-- | Static and Dynamic Inductive Graphs
module Data.Graph.Inductive.Graph (
-- * General Type Defintions
-- ** Node and Edge Types
Node,LNode,UNode,
Edge,LEdge,UEdge,
-- ** Types Supporting Inductive Graph View
Adj,Context,MContext,Decomp,GDecomp,UContext,UDecomp,
Path,LPath(..),UPath,
-- * Graph Type Classes
-- | We define two graph classes:
--
-- Graph: static, decomposable graphs.
-- Static means that a graph itself cannot be changed
--
-- DynGraph: dynamic, extensible graphs.
-- Dynamic graphs inherit all operations from static graphs
-- but also offer operations to extend and change graphs.
--
-- Each class contains in addition to its essential operations those
-- derived operations that might be overwritten by a more efficient
-- implementation in an instance definition.
--
-- Note that labNodes is essentially needed because the default definition
-- for matchAny is based on it: we need some node from the graph to define
-- matchAny in terms of match. Alternatively, we could have made matchAny
-- essential and have labNodes defined in terms of ufold and matchAny.
-- However, in general, labNodes seems to be (at least) as easy to define
-- as matchAny. We have chosen labNodes instead of the function nodes since
-- nodes can be easily derived from labNodes, but not vice versa.
Graph(..),
DynGraph(..),
-- * Operations
insert,
order,
size,
-- ** Graph Folds and Maps
ufold,gmap,nmap,emap,nemap,
-- ** Graph Projection
nodes,edges,toEdge,edgeLabel,toLEdge,newNodes,gelem,
-- ** Graph Construction and Destruction
insNode,insEdge,delNode,delEdge,delLEdge,delAllLEdge,
insNodes,insEdges,delNodes,delEdges,
buildGr,mkUGraph,
-- ** Subgraphs
gfiltermap,nfilter,labnfilter,labfilter,subgraph,
-- ** Graph Inspection
context,lab,neighbors,lneighbors,
suc,pre,lsuc,lpre,
out,inn,outdeg,indeg,deg,
hasEdge,hasNeighbor,hasLEdge,hasNeighborAdj,
equal,
-- ** Context Inspection
node',lab',labNode',neighbors',lneighbors',
suc',pre',lpre',lsuc',
out',inn',outdeg',indeg',deg',
-- * Pretty-printing
prettify,
prettyPrint,
-- * Ordering of Graphs
OrdGr(..)
) where
import Control.Arrow (first)
import Data.Function (on)
import qualified Data.IntSet as IntSet
import Data.List (delete, foldl', groupBy, sort, sortBy, (\\))
import Data.Maybe (fromMaybe, isJust)
#if __GLASGOW_HASKELL__ < 710
import Data.Monoid (mappend)
#endif
-- | Unlabeled node
type Node = Int
-- | Labeled node
type LNode a = (Node,a)
-- | Quasi-unlabeled node
type UNode = LNode ()
-- | Unlabeled edge
type Edge = (Node,Node)
-- | Labeled edge
type LEdge b = (Node,Node,b)
-- | Quasi-unlabeled edge
type UEdge = LEdge ()
-- | Unlabeled path
type Path = [Node]
-- | Labeled path
newtype LPath a = LP { unLPath :: [LNode a] }
instance (Show a) => Show (LPath a) where
show (LP xs) = show xs
instance (Eq a) => Eq (LPath a) where
(LP []) == (LP []) = True
(LP ((_,x):_)) == (LP ((_,y):_)) = x==y
(LP _) == (LP _) = False
instance (Ord a) => Ord (LPath a) where
compare (LP []) (LP []) = EQ
compare (LP ((_,x):_)) (LP ((_,y):_)) = compare x y
compare _ _ = error "LPath: cannot compare two empty paths"
-- | Quasi-unlabeled path
type UPath = [UNode]
-- | Labeled links to or from a 'Node'.
type Adj b = [(b,Node)]
-- | Links to the 'Node', the 'Node' itself, a label, links from the 'Node'.
--
-- In other words, this captures all information regarding the
-- specified 'Node' within a graph.
type Context a b = (Adj b,Node,a,Adj b) -- Context a b "=" Context' a b "+" Node
type MContext a b = Maybe (Context a b)
-- | 'Graph' decomposition - the context removed from a 'Graph', and the rest
-- of the 'Graph'.
type Decomp g a b = (MContext a b,g a b)
-- | The same as 'Decomp', only more sure of itself.
type GDecomp g a b = (Context a b,g a b)
-- | Unlabeled context.
type UContext = ([Node],Node,[Node])
-- | Unlabeled decomposition.
type UDecomp g = (Maybe UContext,g)
-- | Minimum implementation: 'empty', 'isEmpty', 'match', 'mkGraph', 'labNodes'
class Graph gr where
{-# MINIMAL empty, isEmpty, match, mkGraph, labNodes #-}
-- | An empty 'Graph'.
empty :: gr a b
-- | True if the given 'Graph' is empty.
isEmpty :: gr a b -> Bool
-- | Decompose a 'Graph' into the 'MContext' found for the given node and the
-- remaining 'Graph'.
match :: Node -> gr a b -> Decomp gr a b
-- | Create a 'Graph' from the list of 'LNode's and 'LEdge's.
--
-- For graphs that are also instances of 'DynGraph', @mkGraph ns
-- es@ should be equivalent to @('insEdges' es . 'insNodes' ns)
-- 'empty'@.
mkGraph :: [LNode a] -> [LEdge b] -> gr a b
-- | A list of all 'LNode's in the 'Graph'.
labNodes :: gr a b -> [LNode a]
-- | Decompose a graph into the 'Context' for an arbitrarily-chosen 'Node'
-- and the remaining 'Graph'.
matchAny :: gr a b -> GDecomp gr a b
matchAny g = case labNodes g of
[] -> error "Match Exception, Empty Graph"
(v,_):_ ->
case match v g of
(Just c,g') -> (c,g')
_ -> error "Match Exception, cannot extract node"
-- | The number of 'Node's in a 'Graph'.
noNodes :: gr a b -> Int
noNodes = length . labNodes
-- | The minimum and maximum 'Node' in a 'Graph'.
nodeRange :: gr a b -> (Node,Node)
nodeRange g
| isEmpty g = error "nodeRange of empty graph"
| otherwise = (minimum vs, maximum vs)
where
vs = nodes g
-- | A list of all 'LEdge's in the 'Graph'.
labEdges :: gr a b -> [LEdge b]
labEdges = ufold (\(_,v,_,s)->(map (\(l,w)->(v,w,l)) s ++)) []
class (Graph gr) => DynGraph gr where
-- | Merge the 'Context' into the 'DynGraph'.
--
-- Context adjacencies should only refer to either a Node already
-- in a graph or the node in the Context itself (for loops).
--
-- Behaviour is undefined if the specified 'Node' already exists
-- in the graph.
(&) :: Context a b -> gr a b -> gr a b
-- | A synonym for '&', to avoid conflicts with the similarly named
-- operator in "Data.Function".
insert :: DynGraph gr => Context a b -> gr a b -> gr a b
insert = (&)
-- | The number of nodes in the graph. An alias for 'noNodes'.
order :: (Graph gr) => gr a b -> Int
order = noNodes
-- | The number of edges in the graph.
--
-- Note that this counts every edge found, so if you are
-- representing an unordered graph by having each edge mirrored this
-- will be incorrect.
--
-- If you created an unordered graph by either mirroring every edge
-- (including loops!) or using the @undir@ function in
-- "Data.Graph.Inductive.Basic" then you can safely halve the value
-- returned by this.
size :: (Graph gr) => gr a b -> Int
size = length . labEdges
-- | Fold a function over the graph by recursively calling 'match'.
ufold :: (Graph gr) => (Context a b -> c -> c) -> c -> gr a b -> c
ufold f u g
| isEmpty g = u
| otherwise = f c (ufold f u g')
where
(c,g') = matchAny g
-- | Map a function over the graph by recursively calling 'match'.
gmap :: (DynGraph gr) => (Context a b -> Context c d) -> gr a b -> gr c d
gmap f = ufold (\c->(f c&)) empty
{-# NOINLINE [0] gmap #-}
-- | Map a function over the 'Node' labels in a graph.
nmap :: (DynGraph gr) => (a -> c) -> gr a b -> gr c b
nmap f = gmap (\(p,v,l,s)->(p,v,f l,s))
{-# NOINLINE [0] nmap #-}
-- | Map a function over the 'Edge' labels in a graph.
emap :: (DynGraph gr) => (b -> c) -> gr a b -> gr a c
emap f = gmap (\(p,v,l,s)->(map1 f p,v,l,map1 f s))
where
map1 g = map (first g)
{-# NOINLINE [0] emap #-}
-- | Map functions over both the 'Node' and 'Edge' labels in a graph.
nemap :: (DynGraph gr) => (a -> c) -> (b -> d) -> gr a b -> gr c d
nemap fn fe = gmap (\(p,v,l,s) -> (fe' p,v,fn l,fe' s))
where
fe' = map (first fe)
{-# NOINLINE [0] nemap #-}
-- | List all 'Node's in the 'Graph'.
nodes :: (Graph gr) => gr a b -> [Node]
nodes = map fst . labNodes
-- | List all 'Edge's in the 'Graph'.
edges :: (Graph gr) => gr a b -> [Edge]
edges = map toEdge . labEdges
-- | Drop the label component of an edge.
toEdge :: LEdge b -> Edge
toEdge (v,w,_) = (v,w)
-- | Add a label to an edge.
toLEdge :: Edge -> b -> LEdge b
toLEdge (v,w) l = (v,w,l)
-- | The label in an edge.
edgeLabel :: LEdge b -> b
edgeLabel (_,_,l) = l
-- | List N available 'Node's, i.e. 'Node's that are not used in the 'Graph'.
newNodes :: (Graph gr) => Int -> gr a b -> [Node]
newNodes i g
| isEmpty g = [0..i-1]
| otherwise = [n+1..n+i]
where
(_,n) = nodeRange g
-- | 'True' if the 'Node' is present in the 'Graph'.
gelem :: (Graph gr) => Node -> gr a b -> Bool
gelem v = isJust . fst . match v
-- | Insert a 'LNode' into the 'Graph'.
insNode :: (DynGraph gr) => LNode a -> gr a b -> gr a b
insNode (v,l) = (([],v,l,[])&)
{-# NOINLINE [0] insNode #-}
-- | Insert a 'LEdge' into the 'Graph'.
insEdge :: (DynGraph gr) => LEdge b -> gr a b -> gr a b
insEdge (v,w,l) g = (pr,v,la,(l,w):su) & g'
where
(mcxt,g') = match v g
(pr,_,la,su) = fromMaybe
(error ("insEdge: cannot add edge from non-existent vertex " ++ show v))
mcxt
{-# NOINLINE [0] insEdge #-}
-- | Remove a 'Node' from the 'Graph'.
delNode :: (Graph gr) => Node -> gr a b -> gr a b
delNode v = delNodes [v]
-- | Remove an 'Edge' from the 'Graph'.
--
-- NOTE: in the case of multiple edges, this will delete /all/ such
-- edges from the graph as there is no way to distinguish between
-- them. If you need to delete only a single such edge, please use
-- 'delLEdge'.
delEdge :: (DynGraph gr) => Edge -> gr a b -> gr a b
delEdge (v,w) g = case match v g of
(Nothing,_) -> g
(Just (p,v',l,s),g') -> (p,v',l,filter ((/=w).snd) s) & g'
-- | Remove an 'LEdge' from the 'Graph'.
--
-- NOTE: in the case of multiple edges with the same label, this
-- will only delete the /first/ such edge. To delete all such
-- edges, please use 'delAllLEdge'.
delLEdge :: (DynGraph gr, Eq b) => LEdge b -> gr a b -> gr a b
delLEdge = delLEdgeBy delete
-- | Remove all edges equal to the one specified.
delAllLEdge :: (DynGraph gr, Eq b) => LEdge b -> gr a b -> gr a b
delAllLEdge = delLEdgeBy (filter . (/=))
delLEdgeBy :: (DynGraph gr) => ((b,Node) -> Adj b -> Adj b)
-> LEdge b -> gr a b -> gr a b
delLEdgeBy f (v,w,b) g = case match v g of
(Nothing,_) -> g
(Just (p,v',l,s),g') -> (p,v',l,f (b,w) s) & g'
-- | Insert multiple 'LNode's into the 'Graph'.
insNodes :: (DynGraph gr) => [LNode a] -> gr a b -> gr a b
insNodes vs g = foldl' (flip insNode) g vs
{-# INLINABLE insNodes #-}
-- | Insert multiple 'LEdge's into the 'Graph'.
insEdges :: (DynGraph gr) => [LEdge b] -> gr a b -> gr a b
insEdges es g = foldl' (flip insEdge) g es
{-# INLINABLE insEdges #-}
-- | Remove multiple 'Node's from the 'Graph'.
delNodes :: (Graph gr) => [Node] -> gr a b -> gr a b
delNodes vs g = foldl' (snd .: flip match) g vs
-- | Remove multiple 'Edge's from the 'Graph'.
delEdges :: (DynGraph gr) => [Edge] -> gr a b -> gr a b
delEdges es g = foldl' (flip delEdge) g es
-- | Build a 'Graph' from a list of 'Context's.
--
-- The list should be in the order such that earlier 'Context's
-- depend upon later ones (i.e. as produced by @'ufold' (:) []@).
buildGr :: (DynGraph gr) => [Context a b] -> gr a b
buildGr = foldr (&) empty
-- | Build a quasi-unlabeled 'Graph'.
mkUGraph :: (Graph gr) => [Node] -> [Edge] -> gr () ()
mkUGraph vs es = mkGraph (labUNodes vs) (labUEdges es)
where
labUEdges = map (`toLEdge` ())
labUNodes = map (flip (,) ())
-- | Build a graph out of the contexts for which the predicate is
-- satisfied by recursively calling 'match'.
gfiltermap :: DynGraph gr => (Context a b -> MContext c d) -> gr a b -> gr c d
gfiltermap f = ufold (maybe id (&) . f) empty
-- | Returns the subgraph only containing the labelled nodes which
-- satisfy the given predicate.
labnfilter :: Graph gr => (LNode a -> Bool) -> gr a b -> gr a b
labnfilter p gr = delNodes (map fst . filter (not . p) $ labNodes gr) gr
-- | Returns the subgraph only containing the nodes which satisfy the
-- given predicate.
nfilter :: DynGraph gr => (Node -> Bool) -> gr a b -> gr a b
nfilter f = labnfilter (f . fst)
-- | Returns the subgraph only containing the nodes whose labels
-- satisfy the given predicate.
labfilter :: DynGraph gr => (a -> Bool) -> gr a b -> gr a b
labfilter f = labnfilter (f . snd)
-- | Returns the subgraph induced by the supplied nodes.
subgraph :: DynGraph gr => [Node] -> gr a b -> gr a b
subgraph vs = let vs' = IntSet.fromList vs
in nfilter (`IntSet.member` vs')
-- | Find the context for the given 'Node'. Causes an error if the 'Node' is
-- not present in the 'Graph'.
context :: (Graph gr) => gr a b -> Node -> Context a b
context g v = fromMaybe (error ("Match Exception, Node: "++show v))
(fst (match v g))
-- | Find the label for a 'Node'.
lab :: (Graph gr) => gr a b -> Node -> Maybe a
lab g v = fmap lab' . fst $ match v g
-- | Find the neighbors for a 'Node'.
neighbors :: (Graph gr) => gr a b -> Node -> [Node]
neighbors = map snd .: lneighbors
-- | Find the labelled links coming into or going from a 'Context'.
lneighbors :: (Graph gr) => gr a b -> Node -> Adj b
lneighbors = maybe [] lneighbors' .: mcontext
-- | Find all 'Node's that have a link from the given 'Node'.
suc :: (Graph gr) => gr a b -> Node -> [Node]
suc = map snd .: context4l
-- | Find all 'Node's that link to to the given 'Node'.
pre :: (Graph gr) => gr a b -> Node -> [Node]
pre = map snd .: context1l
-- | Find all 'Node's that are linked from the given 'Node' and the label of
-- each link.
lsuc :: (Graph gr) => gr a b -> Node -> [(Node,b)]
lsuc = map flip2 .: context4l
-- | Find all 'Node's that link to the given 'Node' and the label of each link.
lpre :: (Graph gr) => gr a b -> Node -> [(Node,b)]
lpre = map flip2 .: context1l
-- | Find all outward-bound 'LEdge's for the given 'Node'.
out :: (Graph gr) => gr a b -> Node -> [LEdge b]
out g v = map (\(l,w)->(v,w,l)) (context4l g v)
-- | Find all inward-bound 'LEdge's for the given 'Node'.
inn :: (Graph gr) => gr a b -> Node -> [LEdge b]
inn g v = map (\(l,w)->(w,v,l)) (context1l g v)
-- | The outward-bound degree of the 'Node'.
outdeg :: (Graph gr) => gr a b -> Node -> Int
outdeg = length .: context4l
-- | The inward-bound degree of the 'Node'.
indeg :: (Graph gr) => gr a b -> Node -> Int
indeg = length .: context1l
-- | The degree of the 'Node'.
deg :: (Graph gr) => gr a b -> Node -> Int
deg = deg' .: context
-- | The 'Node' in a 'Context'.
node' :: Context a b -> Node
node' (_,v,_,_) = v
-- | The label in a 'Context'.
lab' :: Context a b -> a
lab' (_,_,l,_) = l
-- | The 'LNode' from a 'Context'.
labNode' :: Context a b -> LNode a
labNode' (_,v,l,_) = (v,l)
-- | All 'Node's linked to or from in a 'Context'.
neighbors' :: Context a b -> [Node]
neighbors' (p,_,_,s) = map snd p++map snd s
-- | All labelled links coming into or going from a 'Context'.
lneighbors' :: Context a b -> Adj b
lneighbors' (p,_,_,s) = p ++ s
-- | All 'Node's linked to in a 'Context'.
suc' :: Context a b -> [Node]
suc' = map snd . context4l'
-- | All 'Node's linked from in a 'Context'.
pre' :: Context a b -> [Node]
pre' = map snd . context1l'
-- | All 'Node's linked from in a 'Context', and the label of the links.
lsuc' :: Context a b -> [(Node,b)]
lsuc' = map flip2 . context4l'
-- | All 'Node's linked from in a 'Context', and the label of the links.
lpre' :: Context a b -> [(Node,b)]
lpre' = map flip2 . context1l'
-- | All outward-directed 'LEdge's in a 'Context'.
out' :: Context a b -> [LEdge b]
out' c@(_,v,_,_) = map (\(l,w)->(v,w,l)) (context4l' c)
-- | All inward-directed 'LEdge's in a 'Context'.
inn' :: Context a b -> [LEdge b]
inn' c@(_,v,_,_) = map (\(l,w)->(w,v,l)) (context1l' c)
-- | The outward degree of a 'Context'.
outdeg' :: Context a b -> Int
outdeg' = length . context4l'
-- | The inward degree of a 'Context'.
indeg' :: Context a b -> Int
indeg' = length . context1l'
-- | The degree of a 'Context'.
deg' :: Context a b -> Int
deg' (p,_,_,s) = length p+length s
-- | Checks if there is a directed edge between two nodes.
hasEdge :: Graph gr => gr a b -> Edge -> Bool
hasEdge gr (v,w) = w `elem` suc gr v
-- | Checks if there is an undirected edge between two nodes.
hasNeighbor :: Graph gr => gr a b -> Node -> Node -> Bool
hasNeighbor gr v w = w `elem` neighbors gr v
-- | Checks if there is a labelled edge between two nodes.
hasLEdge :: (Graph gr, Eq b) => gr a b -> LEdge b -> Bool
hasLEdge gr (v,w,l) = (w,l) `elem` lsuc gr v
-- | Checks if there is an undirected labelled edge between two nodes.
hasNeighborAdj :: (Graph gr, Eq b) => gr a b -> Node -> (b,Node) -> Bool
hasNeighborAdj gr v a = a `elem` lneighbors gr v
----------------------------------------------------------------------
-- GRAPH EQUALITY
----------------------------------------------------------------------
slabNodes :: (Graph gr) => gr a b -> [LNode a]
slabNodes = sortBy (compare `on` fst) . labNodes
glabEdges :: (Graph gr) => gr a b -> [GroupEdges b]
glabEdges = map (GEs . groupLabels)
. groupBy ((==) `on` toEdge)
. sortBy (compare `on` toEdge)
. labEdges
where
groupLabels les = toLEdge (toEdge (head les)) (map edgeLabel les)
equal :: (Eq a,Eq b,Graph gr) => gr a b -> gr a b -> Bool
equal g g' = slabNodes g == slabNodes g' && glabEdges g == glabEdges g'
-- This assumes that nodes aren't repeated (which shouldn't happen for
-- sane graph instances). If node IDs are repeated, then the usage of
-- slabNodes cannot guarantee stable ordering.
-- Newtype wrapper just to test for equality of multiple edges. This
-- is needed because without an Ord constraint on `b' it is not
-- possible to guarantee a stable ordering on edge labels.
newtype GroupEdges b = GEs (LEdge [b])
deriving (Show, Read)
instance (Eq b) => Eq (GroupEdges b) where
(GEs (v1,w1,bs1)) == (GEs (v2,w2,bs2)) = v1 == v2
&& w1 == w2
&& eqLists bs1 bs2
eqLists :: (Eq a) => [a] -> [a] -> Bool
eqLists xs ys = null (xs \\ ys) && null (ys \\ xs)
-- OK to use \\ here as we want each value in xs to cancel a *single*
-- value in ys.
----------------------------------------------------------------------
-- UTILITIES
----------------------------------------------------------------------
-- auxiliary functions used in the implementation of the
-- derived class members
--
(.:) :: (c -> d) -> (a -> b -> c) -> a -> b -> d
-- f .: g = \x y->f (g x y)
-- f .: g = (f .) . g
-- (.:) f = ((f .) .)
-- (.:) = (.) (.) (.)
(.:) = (.) . (.)
flip2 :: (a,b) -> (b,a)
flip2 (x,y) = (y,x)
-- projecting on context elements
--
context1l :: (Graph gr) => gr a b -> Node -> Adj b
context1l = maybe [] context1l' .: mcontext
context4l :: (Graph gr) => gr a b -> Node -> Adj b
context4l = maybe [] context4l' .: mcontext
mcontext :: (Graph gr) => gr a b -> Node -> MContext a b
mcontext = fst .: flip match
context1l' :: Context a b -> Adj b
context1l' (p,v,_,s) = p++filter ((==v).snd) s
context4l' :: Context a b -> Adj b
context4l' (p,v,_,s) = s++filter ((==v).snd) p
----------------------------------------------------------------------
-- PRETTY PRINTING
----------------------------------------------------------------------
-- | Pretty-print the graph. Note that this loses a lot of
-- information, such as edge inverses, etc.
prettify :: (Graph gr, Show a, Show b) => gr a b -> String
prettify g = foldr (showsContext . context g) id (nodes g) ""
where
showsContext (_,n,l,s) sg = shows n . (':':) . shows l
. showString "->" . shows s
. ('\n':) . sg
-- | Pretty-print the graph to stdout.
prettyPrint :: (DynGraph gr, Show a, Show b) => gr a b -> IO ()
prettyPrint = putStr . prettify
----------------------------------------------------------------------
-- Ordered Graph
----------------------------------------------------------------------
-- | OrdGr comes equipped with an Ord instance, so that graphs can be
-- used as e.g. Map keys.
newtype OrdGr gr a b = OrdGr { unOrdGr :: gr a b }
deriving (Read,Show)
instance (Graph gr, Ord a, Ord b) => Eq (OrdGr gr a b) where
g1 == g2 = compare g1 g2 == EQ
instance (Graph gr, Ord a, Ord b) => Ord (OrdGr gr a b) where
compare (OrdGr g1) (OrdGr g2) =
(compare `on` sort . labNodes) g1 g2
`mappend` (compare `on` sort . labEdges) g1 g2
|