1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
{-# LANGUAGE CPP #-}
-- | Utility methods to automatically generate and keep track of a mapping
-- between node labels and 'Node's.
module Data.Graph.Inductive.NodeMap(
-- * Functional Construction
NodeMap,
-- ** Map Construction
new, fromGraph, mkNode, mkNode_, mkNodes, mkLookupNode, mkNodes_, mkEdge, mkEdges,
-- ** Graph Construction
-- | These functions mirror the construction and destruction functions in
-- 'Data.Graph.Inductive.Graph', but use the given 'NodeMap' to look up
-- the appropriate 'Node's. Note that the 'insMapNode' family of functions
-- will create new nodes as needed, but the other functions will not.
insMapNode, insMapLookupNode, insMapNode_, insMapEdge, delMapNode, delMapEdge, insMapNodes,
insMapNodes_, insMapEdges, delMapNodes, delMapEdges, mkMapGraph,
-- * Monadic Construction
NodeMapM,
-- | The following mirror the functional construction functions, but handle passing
-- 'NodeMap's and 'Graph's behind the scenes.
-- ** Map Construction
run, run_, mkNodeM, mkNodesM, mkEdgeM, mkEdgesM,
-- ** Graph Construction
insMapNodeM, insMapEdgeM, delMapNodeM, delMapEdgeM, insMapNodesM,
insMapEdgesM, delMapNodesM, delMapEdgesM,
-- ** Map inspection
memberNode, lookupNode
) where
import Control.Monad.Trans.State
import Data.Graph.Inductive.Graph
import Prelude hiding (map)
import qualified Prelude as P (map)
import Data.Map (Map)
import qualified Data.Map as M
#if MIN_VERSION_containers (0,4,2)
import Control.DeepSeq (NFData (..))
#endif
data NodeMap a =
NodeMap { map :: Map a Node,
key :: Int }
deriving (Eq, Show, Read)
#if MIN_VERSION_containers (0,4,2)
instance (NFData a) => NFData (NodeMap a) where
rnf (NodeMap mp k) = rnf mp `seq` rnf k
#endif
-- | Create a new, empty mapping.
new :: NodeMap a
new = NodeMap { map = M.empty, key = 0 }
-- LNode = (Node, a)
-- | Generate a mapping containing the nodes in the given graph.
fromGraph :: (Ord a, Graph g) => g a b -> NodeMap a
fromGraph g =
let ns = labNodes g
aux (n, a) (m', k') = (M.insert a n m', max n k')
(m, k) = foldr aux (M.empty, 0) ns
in NodeMap { map = m, key = k+1 }
-- | Is the node in the map ?
memberNode :: (Ord a) => a -> NodeMap a -> Bool
memberNode a = M.member a . map
-- | Lookup for the node in the map.
lookupNode :: (Ord a) => a -> NodeMap a -> Maybe Node
lookupNode a = M.lookup a . map
-- | Generate a labelled node from the given label. Will return the same node
-- for the same label.
mkNode :: (Ord a) => NodeMap a -> a -> (LNode a, NodeMap a)
mkNode m = forgetFst . mkLookupNode m
where
forgetFst (_,x,y)=(x,y)
-- | Act as 'mkNode', but return also a boolean set as @True@ if the node was
-- already in the map.
mkLookupNode :: (Ord a) => NodeMap a -> a -> (Bool, LNode a, NodeMap a)
mkLookupNode m@(NodeMap mp k) a =
case M.lookup a mp of
Just i -> (True,(i, a), m)
Nothing ->
let m' = NodeMap { map = M.insert a k mp, key = k+1 }
in (False,(k, a), m')
-- | Generate a labelled node and throw away the modified 'NodeMap'.
mkNode_ :: (Ord a) => NodeMap a -> a -> LNode a
mkNode_ m a = fst $ mkNode m a
-- | Generate a 'LEdge' from the node labels.
mkEdge :: (Ord a) => NodeMap a -> (a, a, b) -> Maybe (LEdge b)
mkEdge (NodeMap m _) (a1, a2, b) =
do n1 <- M.lookup a1 m
n2 <- M.lookup a2 m
return (n1, n2, b)
-- | Generates a list of 'LEdge's.
mkEdges :: (Ord a) => NodeMap a -> [(a, a, b)] -> Maybe [LEdge b]
mkEdges m = mapM (mkEdge m)
-- | Construct a list of nodes.
mkNodes :: (Ord a) => NodeMap a -> [a] -> ([LNode a], NodeMap a)
mkNodes = map' mkNode
map' :: (a -> b -> (c, a)) -> a -> [b] -> ([c], a)
map' _ a [] = ([], a)
map' f a (b:bs) =
let (c, a') = f a b
(cs, a'') = map' f a' bs
in (c:cs, a'')
-- | Construct a list of nodes and throw away the modified 'NodeMap'.
mkNodes_ :: (Ord a) => NodeMap a -> [a] -> [LNode a]
mkNodes_ m as = fst $ mkNodes m as
insMapNode :: (Ord a, DynGraph g) => NodeMap a -> a -> g a b -> (g a b, NodeMap a, LNode a)
insMapNode m a g =
let (n, m') = mkNode m a
in (insNode n g, m', n)
-- | Act as 'insMapNode', but return also a boolean set as @True@ if the node was
-- already in the map.
insMapLookupNode :: (Ord a, DynGraph g) => NodeMap a -> a -> g a b -> (Bool, g a b, NodeMap a, LNode a)
insMapLookupNode m a g =
let (b, n, m') = mkLookupNode m a
in (b, insNode n g, m', n)
insMapNode_ :: (Ord a, DynGraph g) => NodeMap a -> a -> g a b -> g a b
insMapNode_ m a g =
let (g', _, _) = insMapNode m a g
in g'
-- | Partial function: raises exception if passed nodes that are not in the graph.
insMapEdge :: (Ord a, DynGraph g) => NodeMap a -> (a, a, b) -> g a b -> g a b
insMapEdge m e g =
case mkEdge m e of Just e' -> insEdge e' g
Nothing -> error "insMapEdge: invalid edge"
delMapNode :: (Ord a, DynGraph g) => NodeMap a -> a -> g a b -> g a b
delMapNode m a g =
let (n, _) = mkNode_ m a
in delNode n g
-- | Partial function: raises exception if passed nodes that are not in the graph.
delMapEdge :: (Ord a, DynGraph g) => NodeMap a -> (a, a) -> g a b -> g a b
delMapEdge m (n1, n2) g =
case mkEdge m (n1, n2, ()) of Just (n1', n2', _) -> delEdge (n1', n2') g
Nothing -> error "delMapEdge: invalid edge"
insMapNodes :: (Ord a, DynGraph g) => NodeMap a -> [a] -> g a b -> (g a b, NodeMap a, [LNode a])
insMapNodes m as g =
let (ns, m') = mkNodes m as
in (insNodes ns g, m', ns)
insMapNodes_ :: (Ord a, DynGraph g) => NodeMap a -> [a] -> g a b -> g a b
insMapNodes_ m as g =
let (g', _, _) = insMapNodes m as g
in g'
-- | Partial function: raises exception if passed nodes that are not in the graph.
insMapEdges :: (Ord a, DynGraph g) => NodeMap a -> [(a, a, b)] -> g a b -> g a b
insMapEdges m es g =
case mkEdges m es of Just es' -> insEdges es' g
Nothing -> error "insMapEdges: invalid edge"
delMapNodes :: (Ord a, DynGraph g) => NodeMap a -> [a] -> g a b -> g a b
delMapNodes m as g =
let ns = P.map fst $ mkNodes_ m as
in delNodes ns g
-- | Partial function: raises exception if passed nodes that are not in the graph.
delMapEdges :: (Ord a, DynGraph g) => NodeMap a -> [(a, a)] -> g a b -> g a b
delMapEdges m ns g =
case mkEdges m $ P.map (\(a, b) -> (a, b, ())) ns of
Nothing -> error "delMapEdges: invalid edges"
Just ns' ->
let ns'' = P.map (\(a, b, _) -> (a, b)) ns'
in delEdges ns'' g
-- | Partial function: raises exception if passed a node that is not in the graph.
mkMapGraph :: (Ord a, DynGraph g) => [a] -> [(a, a, b)] -> (g a b, NodeMap a)
mkMapGraph ns es =
let (ns', m') = mkNodes new ns
in case mkEdges m' es of
Just es' -> (mkGraph ns' es', m')
Nothing -> error "mkMapGraph: invalid edges"
-- | Graph construction monad; handles passing both the 'NodeMap' and the
-- 'Graph'.
type NodeMapM a b g r = State (NodeMap a, g a b) r
-- | Run a construction; return the value of the computation, the modified
-- 'NodeMap', and the modified 'Graph'.
run :: (DynGraph g, Ord a) => g a b -> NodeMapM a b g r -> (r, (NodeMap a, g a b))
run g m = runState m (fromGraph g, g)
-- | Run a construction and only return the 'Graph'.
run_ :: (DynGraph g, Ord a) => g a b -> NodeMapM a b g r -> g a b
run_ g m = snd . snd $ run g m
{- not used
liftN1 :: (Ord a, DynGraph g) => (NodeMap a -> (c, NodeMap a)) -> NodeMapM a b g c
liftN1 f =
do (m, g) <- get
let (r, m') = f m
put (m', g)
return r
liftN1' :: (Ord a, DynGraph g) => (NodeMap a -> c) -> NodeMapM a b g c
liftN1' f =
do (m, g) <- get
return $ f m
-}
liftN2 :: (NodeMap a -> c -> (d, NodeMap a)) -> c -> NodeMapM a b g d
liftN2 f c =
do (m, g) <- get
let (r, m') = f m c
put (m', g)
return r
liftN2' :: (NodeMap a -> c -> d) -> c -> NodeMapM a b g d
liftN2' f c =
do (m, _) <- get
return $ f m c
{- not used
liftN3 :: (Ord a, DynGraph g) => (NodeMap a -> c -> d -> (e, NodeMap a)) -> c -> d -> NodeMapM a b g e
liftN3 f c d =
do (m, g) <- get
let (r, m') = f m c d
put (m', g)
return r
liftN3' :: (Ord a, DynGraph g) => (NodeMap a -> c -> d -> e) -> c -> d -> NodeMapM a b g e
liftN3' f c d =
do (m, g) <- get
return $ f m c d
-}
liftM1 :: (NodeMap a -> c -> g a b -> g a b) -> c -> NodeMapM a b g ()
liftM1 f c =
do (m, g) <- get
let g' = f m c g
put (m, g')
liftM1' :: (NodeMap a -> c -> g a b -> (g a b, NodeMap a, d)) -> c -> NodeMapM a b g d
liftM1' f c =
do (m, g) <- get
let (g', m', r) = f m c g
put (m', g')
return r
-- | Monadic node construction.
mkNodeM :: (Ord a) => a -> NodeMapM a b g (LNode a)
mkNodeM = liftN2 mkNode
mkNodesM :: (Ord a) => [a] -> NodeMapM a b g [LNode a]
mkNodesM = liftN2 mkNodes
mkEdgeM :: (Ord a) => (a, a, b) -> NodeMapM a b g (Maybe (LEdge b))
mkEdgeM = liftN2' mkEdge
mkEdgesM :: (Ord a) => [(a, a, b)] -> NodeMapM a b g (Maybe [LEdge b])
mkEdgesM = liftN2' mkEdges
insMapNodeM :: (Ord a, DynGraph g) => a -> NodeMapM a b g (LNode a)
insMapNodeM = liftM1' insMapNode
insMapEdgeM :: (Ord a, DynGraph g) => (a, a, b) -> NodeMapM a b g ()
insMapEdgeM = liftM1 insMapEdge
delMapNodeM :: (Ord a, DynGraph g) => a -> NodeMapM a b g ()
delMapNodeM = liftM1 delMapNode
delMapEdgeM :: (Ord a, DynGraph g) => (a, a) -> NodeMapM a b g ()
delMapEdgeM = liftM1 delMapEdge
insMapNodesM :: (Ord a, DynGraph g) => [a] -> NodeMapM a b g [LNode a]
insMapNodesM = liftM1' insMapNodes
insMapEdgesM :: (Ord a, DynGraph g) => [(a, a, b)] -> NodeMapM a b g ()
insMapEdgesM = liftM1 insMapEdges
delMapNodesM :: (Ord a, DynGraph g) => [a] -> NodeMapM a b g ()
delMapNodesM = liftM1 delMapNodes
delMapEdgesM :: (Ord a, DynGraph g) => [(a, a)] -> NodeMapM a b g ()
delMapEdgesM = liftM1 delMapEdges
|