1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
-- (c) 2000 - 2005 by Martin Erwig [see file COPYRIGHT]
-- | Depth-first search algorithms.
--
-- Names consist of:
--
-- 1. An optional direction parameter, specifying which nodes to visit next.
--
-- [@u@] undirectional: ignore edge direction
-- [@r@] reversed: walk edges in reverse
-- [@x@] user defined: speciy which paths to follow
--
-- 2. "df" for depth-first
-- 3. A structure parameter, specifying the type of the result.
--
-- [@s@] Flat list of results
-- [@f@] Structured 'Tree' of results
--
-- 4. An optional \"With\", which instead of putting the found nodes directly
-- into the result, adds the result of a computation on them into it.
-- 5. An optional prime character, in which case all nodes of the graph will
-- be visited, instead of a user-given subset.
module Data.Graph.Inductive.Query.DFS (
CFun,
-- * Standard
dfs, dfs', dff, dff',
dfsWith, dfsWith', dffWith, dffWith',
xdfsWith, xdfWith, xdffWith,
-- * Undirected
udfs, udfs', udff, udff',
udffWith, udffWith',
-- * Reversed
rdff, rdff', rdfs, rdfs',
rdffWith, rdffWith',
-- * Applications of depth first search/forest
topsort, topsort', scc, reachable,
-- * Applications of undirected depth first search/forest
components, noComponents, isConnected, condensation
) where
import Data.Graph.Inductive.Basic
import Data.Graph.Inductive.Graph
import Data.Tree
import qualified Data.Map as Map
import Control.Monad (liftM2)
import Data.Tuple (swap)
-- | Many functions take a list of nodes to visit as an explicit argument.
-- fixNodes is a convenience function that adds all the nodes present in a
-- graph as that list.
fixNodes :: (Graph gr) => ([Node] -> gr a b -> c) -> gr a b -> c
fixNodes f g = f (nodes g) g
type CFun a b c = Context a b -> c
-- | Most general DFS algorithm to create a list of results. The other
-- list-returning functions such as 'dfs' are all defined in terms of this
-- one.
--
-- @
-- 'xdfsWith' d f vs = 'preorderF' . 'xdffWith' d f vs
-- @
xdfsWith :: (Graph gr)
=> CFun a b [Node] -- ^ Mapping from a node to its neighbours to be visited
-- as well. 'suc'' for example makes 'xdfsWith'
-- traverse the graph following the edge directions,
-- while 'pre'' means reversed directions.
-> CFun a b c -- ^ Mapping from the 'Context' of a node to a result
-- value.
-> [Node] -- ^ Nodes to be visited.
-> gr a b
-> [c]
xdfsWith _ _ [] _ = []
xdfsWith _ _ _ g | isEmpty g = []
xdfsWith d f (v:vs) g = case match v g of
(Just c,g') -> f c:xdfsWith d f (d c++vs) g'
(Nothing,g') -> xdfsWith d f vs g'
-- | Depth-first search.
dfs :: (Graph gr) => [Node] -> gr a b -> [Node]
dfs = dfsWith node'
dfsWith :: (Graph gr) => CFun a b c -> [Node] -> gr a b -> [c]
dfsWith = xdfsWith suc'
dfsWith' :: (Graph gr) => CFun a b c -> gr a b -> [c]
dfsWith' f = fixNodes (dfsWith f)
dfs' :: (Graph gr) => gr a b -> [Node]
dfs' = dfsWith' node'
-- | Undirected depth-first search, obtained by following edges regardless
-- of their direction.
udfs :: (Graph gr) => [Node] -> gr a b -> [Node]
udfs = xdfsWith neighbors' node'
udfs' :: (Graph gr) => gr a b -> [Node]
udfs' = fixNodes udfs
-- | Reverse depth-first search, obtained by following predecessors.
rdfs :: (Graph gr) => [Node] -> gr a b -> [Node]
rdfs = xdfsWith pre' node'
rdfs' :: (Graph gr) => gr a b -> [Node]
rdfs' = fixNodes rdfs
-- | Most general DFS algorithm to create a forest of results, otherwise very
-- similar to 'xdfsWith'. The other forest-returning functions such as 'dff'
-- are all defined in terms of this one.
xdfWith :: (Graph gr)
=> CFun a b [Node]
-> CFun a b c
-> [Node]
-> gr a b
-> ([Tree c],gr a b)
xdfWith _ _ [] g = ([],g)
xdfWith _ _ _ g | isEmpty g = ([],g)
xdfWith d f (v:vs) g = case match v g of
(Nothing,g1) -> xdfWith d f vs g1
(Just c,g1) -> (Node (f c) ts:ts',g3)
where (ts,g2) = xdfWith d f (d c) g1
(ts',g3) = xdfWith d f vs g2
-- | Discard the graph part of the result of 'xdfWith'.
--
-- @
-- xdffWith d f vs g = fst (xdfWith d f vs g)
-- @
xdffWith :: (Graph gr)
=> CFun a b [Node]
-> CFun a b c
-> [Node]
-> gr a b
-> [Tree c]
xdffWith d f vs g = fst (xdfWith d f vs g)
-- | Directed depth-first forest.
dff :: (Graph gr) => [Node] -> gr a b -> [Tree Node]
dff = dffWith node'
dffWith :: (Graph gr) => CFun a b c -> [Node] -> gr a b -> [Tree c]
dffWith = xdffWith suc'
dffWith' :: (Graph gr) => CFun a b c -> gr a b -> [Tree c]
dffWith' f = fixNodes (dffWith f)
dff' :: (Graph gr) => gr a b -> [Tree Node]
dff' = dffWith' node'
-- | Undirected depth-first forest, obtained by following edges regardless
-- of their direction.
udff :: (Graph gr) => [Node] -> gr a b -> [Tree Node]
udff = udffWith node'
udffWith :: (Graph gr) => CFun a b c -> [Node] -> gr a b -> [Tree c]
udffWith = xdffWith neighbors'
udffWith' :: (Graph gr) => CFun a b c -> gr a b -> [Tree c]
udffWith' f = fixNodes (udffWith f)
udff' :: (Graph gr) => gr a b -> [Tree Node]
udff' = udffWith' node'
-- | Reverse depth-first forest, obtained by following predecessors.
rdff :: (Graph gr) => [Node] -> gr a b -> [Tree Node]
rdff = rdffWith node'
rdffWith :: (Graph gr) => CFun a b c -> [Node] -> gr a b -> [Tree c]
rdffWith = xdffWith pre'
rdffWith' :: (Graph gr) => CFun a b c -> gr a b -> [Tree c]
rdffWith' f = fixNodes (rdffWith f)
rdff' :: (Graph gr) => gr a b -> [Tree Node]
rdff' = rdffWith' node'
----------------------------------------------------------------------
-- ALGORITHMS BASED ON DFS
----------------------------------------------------------------------
-- | Collection of connected components
components :: (Graph gr) => gr a b -> [[Node]]
components = map preorder . udff'
-- | Number of connected components
noComponents :: (Graph gr) => gr a b -> Int
noComponents = length . components
-- | Is the graph connected?
isConnected :: (Graph gr) => gr a b -> Bool
isConnected = (==1) . noComponents
-- | Flatten a 'Tree' in reverse order
postflatten :: Tree a -> [a]
postflatten (Node v ts) = postflattenF ts ++ [v]
-- | Flatten a forest in reverse order
postflattenF :: [Tree a] -> [a]
postflattenF = concatMap postflatten
-- | <http://en.wikipedia.org/wiki/Topological_sorting Topological sorting>,
-- i.e. a list of 'Node's so that if there's an edge between a source and a
-- target node, the source appears earlier in the result.
topsort :: (Graph gr) => gr a b -> [Node]
topsort = reverse . postflattenF . dff'
-- | 'topsort', returning only the labels of the nodes.
topsort' :: (Graph gr) => gr a b -> [a]
topsort' = reverse . postorderF . dffWith' lab'
-- | Collection of strongly connected components
scc :: (Graph gr) => gr a b -> [[Node]]
scc g = map preorder (rdff (topsort g) g)
-- | Collection of nodes reachable from a starting point.
reachable :: (Graph gr) => Node -> gr a b -> [Node]
reachable v g = preorderF (dff [v] g)
-- | The condensation of the given graph, i.e., the graph of its
-- strongly connected components.
condensation :: Graph gr => gr a b -> gr [Node] ()
condensation gr = mkGraph vs es
where
sccs = scc gr
vs = zip [1..] sccs
vMap = Map.fromList $ map swap vs
getN = (vMap Map.!)
es = [ (getN c1, getN c2, ()) | c1 <- sccs, c2 <- sccs
, (c1 /= c2) && any (hasEdge gr) (liftM2 (,) c1 c2) ]
|