File: Tree.hs

package info (click to toggle)
haskell-fgl 5.8.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 348 kB
  • sloc: haskell: 3,121; makefile: 3
file content (167 lines) | stat: -rw-r--r-- 4,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE DeriveGeneric #-}
#endif

-- (c) 1999 - 2002 by Martin Erwig [see file COPYRIGHT]
-- | Tree-based implementation of 'Graph' and 'DynGraph'
--
--   You will probably have better performance using the
--   "Data.Graph.Inductive.PatriciaTree" implementation instead.

module Data.Graph.Inductive.Tree (Gr,UGr) where

import Data.Graph.Inductive.Graph

import           Control.Applicative (liftA2)
import           Data.List           (foldl', sort)
import           Data.Map            (Map)
import qualified Data.Map            as M
import           Data.Maybe          (fromMaybe)

#if MIN_VERSION_containers (0,4,2)
import Control.DeepSeq (NFData (..))
#endif

#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif

#if MIN_VERSION_base (4,8,0)
import Data.Bifunctor
#else
import Control.Arrow (first, second)
#endif

----------------------------------------------------------------------
-- GRAPH REPRESENTATION
----------------------------------------------------------------------

newtype Gr a b = Gr (GraphRep a b)
#if __GLASGOW_HASKELL__ >= 702
  deriving (Generic)
#endif

type GraphRep a b = Map Node (Context' a b)
type Context' a b = (Adj b,a,Adj b)

type UGr = Gr () ()

----------------------------------------------------------------------
-- CLASS INSTANCES
----------------------------------------------------------------------

instance (Eq a, Ord b) => Eq (Gr a b) where
  (Gr g1) == (Gr g2) = fmap sortAdj g1 == fmap sortAdj g2
    where
      sortAdj (p,n,s) = (sort p,n,sort s)

instance (Show a, Show b) => Show (Gr a b) where
  showsPrec d g = showParen (d > 10) $
                    showString "mkGraph "
                    . shows (labNodes g)
                    . showString " "
                    . shows (labEdges g)

instance (Read a, Read b) => Read (Gr a b) where
  readsPrec p = readParen (p > 10) $ \ r -> do
    ("mkGraph", s) <- lex r
    (ns,t) <- reads s
    (es,u) <- reads t
    return (mkGraph ns es, u)

-- Graph
--
instance Graph Gr where
  empty             = Gr M.empty

  isEmpty (Gr g)    = M.null g

  match v gr@(Gr g) = maybe (Nothing, gr)
                            (first Just . uncurry (cleanSplit v))
                      . (\(m,g') -> fmap (flip (,) g') m)
                      $ M.updateLookupWithKey (const (const Nothing)) v g

  mkGraph vs es     = insEdges es
                      . Gr
                      . M.fromList
                      . map (second (\l -> ([],l,[])))
                      $ vs

  labNodes (Gr g)   = map (\(v,(_,l,_))->(v,l)) (M.toList g)

  matchAny (Gr g)   = maybe (error "Match Exception, Empty Graph")
                            (uncurry (uncurry cleanSplit))
                            (M.minViewWithKey g)

  noNodes   (Gr g)  = M.size g

  nodeRange (Gr g)  = fromMaybe (error "nodeRange of empty graph")
                      $ liftA2 (,) (ix (M.minViewWithKey g))
                                   (ix (M.maxViewWithKey g))
    where
      ix            = fmap (fst . fst)

  labEdges  (Gr g)  = concatMap (\(v,(_,_,s))->map (\(l,w)->(v,w,l)) s) (M.toList g)

-- After a Node (with its corresponding Context') are split out of a
-- GraphRep, clean up the remainders.
cleanSplit :: Node -> Context' a b -> GraphRep a b
              -> (Context a b, Gr a b)
cleanSplit v (p,l,s) g = (c, Gr g')
  where
    -- Note: loops are kept only in successor list
    c = (p', v, l, s)
    p' = rmLoops p
    s' = rmLoops s
    rmLoops = filter ((/=v) . snd)

    g' = updAdj s' (clearPred v) . updAdj p' (clearSucc v) $ g

-- DynGraph
--
instance DynGraph Gr where
  (p,v,l,s) & (Gr g) = Gr
                       . updAdj p (addSucc v)
                       . updAdj s (addPred v)
                       $ M.alter addCntxt v g
    where
      addCntxt = maybe (Just cntxt')
                       (const (error ("Node Exception, Node: "++show v)))
      cntxt' = (p,l,s)

#if MIN_VERSION_containers (0,4,2)
instance (NFData a, NFData b) => NFData (Gr a b) where
  rnf (Gr g) = rnf g
#endif

instance Functor (Gr a) where
  fmap = emap

#if MIN_VERSION_base (4,8,0)
instance Bifunctor Gr where
  bimap = nemap

  first = nmap

  second = emap
#endif

----------------------------------------------------------------------
-- UTILITIES
----------------------------------------------------------------------

addSucc :: Node -> b -> Context' a b -> Context' a b
addSucc v l (p,l',s) = (p,l',(l,v):s)

addPred :: Node -> b -> Context' a b -> Context' a b
addPred v l (p,l',s) = ((l,v):p,l',s)

clearSucc :: Node -> b -> Context' a b -> Context' a b
clearSucc v _ (p,l,s) = (p,l,filter ((/=v).snd) s)

clearPred :: Node -> b -> Context' a b -> Context' a b
clearPred v _ (p,l,s) = (filter ((/=v).snd) p,l,s)

updAdj :: Adj b -> (b -> Context' a b -> Context' a b) -> GraphRep a b -> GraphRep a b
updAdj adj f g = foldl' (\g' (l,v) -> M.adjust (f l) v g') g adj