1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
{-# OPTIONS_HADDOCK not-home #-}
-----------------------------------------------------------------------------
-- |
-- Copyright : (c) Daan Leijen 2002
-- License : BSD-style
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- This contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- An efficient implementation of sets.
--
-- These modules are intended to be imported qualified, to avoid name
-- clashes with Prelude functions, e.g.
--
-- > import Data.Set (Set)
-- > import qualified Data.Set as Set
--
-- The implementation of 'Set' is based on /size balanced/ binary trees (or
-- trees of /bounded balance/) as described by:
--
-- * Stephen Adams, \"/Efficient sets: a balancing act/\",
-- Journal of Functional Programming 3(4):553-562, October 1993,
-- <http://www.swiss.ai.mit.edu/~adams/BB/>.
-- * J. Nievergelt and E.M. Reingold,
-- \"/Binary search trees of bounded balance/\",
-- SIAM journal of computing 2(1), March 1973.
--
-- Bounds for 'union', 'intersection', and 'difference' are as given
-- by
--
-- * Guy Blelloch, Daniel Ferizovic, and Yihan Sun,
-- \"/Just Join for Parallel Ordered Sets/\",
-- <https://arxiv.org/abs/1602.02120v3>.
--
-- Note that the implementation is /left-biased/ -- the elements of a
-- first argument are always preferred to the second, for example in
-- 'union' or 'insert'. Of course, left-biasing can only be observed
-- when equality is an equivalence relation instead of structural
-- equality.
--
-- /Warning/: The size of the set must not exceed @maxBound::Int@. Violation of
-- this condition is not detected and if the size limit is exceeded, the
-- behavior of the set is completely undefined.
--
-- @since 0.5.9
-----------------------------------------------------------------------------
-- [Note: Using INLINABLE]
-- ~~~~~~~~~~~~~~~~~~~~~~~
-- It is crucial to the performance that the functions specialize on the Ord
-- type when possible. GHC 7.0 and higher does this by itself when it sees th
-- unfolding of a function -- that is why all public functions are marked
-- INLINABLE (that exposes the unfolding).
-- [Note: Using INLINE]
-- ~~~~~~~~~~~~~~~~~~~~
-- For other compilers and GHC pre 7.0, we mark some of the functions INLINE.
-- We mark the functions that just navigate down the tree (lookup, insert,
-- delete and similar). That navigation code gets inlined and thus specialized
-- when possible. There is a price to pay -- code growth. The code INLINED is
-- therefore only the tree navigation, all the real work (rebalancing) is not
-- INLINED by using a NOINLINE.
--
-- All methods marked INLINE have to be nonrecursive -- a 'go' function doing
-- the real work is provided.
-- [Note: Type of local 'go' function]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- If the local 'go' function uses an Ord class, it sometimes heap-allocates
-- the Ord dictionary when the 'go' function does not have explicit type.
-- In that case we give 'go' explicit type. But this slightly decrease
-- performance, as the resulting 'go' function can float out to top level.
-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- As opposed to IntSet, when 'go' function captures an argument, increased
-- heap-allocation can occur: sometimes in a polymorphic function, the 'go'
-- floats out of its enclosing function and then it heap-allocates the
-- dictionary and the argument. Maybe it floats out too late and strictness
-- analyzer cannot see that these could be passed on stack.
-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of Set matters when considering performance.
-- Currently in GHC 7.0, when type has 2 constructors, a forward conditional
-- jump is made when successfully matching second constructor. Successful match
-- of first constructor results in the forward jump not taken.
-- On GHC 7.0, reordering constructors from Tip | Bin to Bin | Tip
-- improves the benchmark by up to 10% on x86.
module Data.Set.Private (
-- * Set type
Set(..) -- instance Eq,Ord,Show,Read,Data,Typeable
, Size
, insertBy'
, empty
) where
import Prelude hiding (filter,foldl,foldr,null,map,take,drop,splitAt)
import Control.Monad (join)
#if __GLASGOW_HASKELL__
import GHC.Exts ( lazy )
#endif
{--------------------------------------------------------------------
Sets are size balanced trees
--------------------------------------------------------------------}
-- | A set of values @a@.
-- See Note: Order of constructors
data Set a = Bin {-# UNPACK #-} !Size !a !(Set a) !(Set a) | Tip
type Size = Int
{--------------------------------------------------------------------
Query
--------------------------------------------------------------------}
-- | /O(1)/. The number of elements in the set.
size :: Set a -> Int
size Tip = 0
size (Bin sz _ _ _) = sz
{--------------------------------------------------------------------
Construction
--------------------------------------------------------------------}
-- | /O(1)/. The empty set.
empty :: Set a
empty = Tip
-- | /O(1)/. Create a singleton set.
singleton :: a -> Set a
singleton x = Bin 1 x Tip Tip
{--------------------------------------------------------------------
Insertion, Deletion
--------------------------------------------------------------------}
-- | /O(log n)/. Insert an element in a set.
-- If the set already contains an element equal to the given value,
-- it is replaced with the new value.
-- See Note: Type of local 'go' function
-- See Note: Avoiding worker/wrapper (in Data.Map.Internal)
insertBy' :: (a -> a -> Ordering) -> a -> Set a -> Maybe (Set a)
insertBy' compare = join go
where
go orig !_ Tip = Just $! singleton (lazy orig)
go orig !x (Bin _ y l r) = case compare x y of
LT -> (\ !l' -> balanceL y l' r) <$!> go orig x l
GT -> (\ !r' -> balanceR y l r') <$!> go orig x r
EQ -> Nothing
#if __GLASGOW_HASKELL__
{-# INLINABLE insertBy' #-}
#else
{-# INLINE insertBy' #-}
#endif
infixl 4 <$!>
(<$!>) :: (a -> b) -> Maybe a -> Maybe b
(<$!>) f = \ case
Nothing -> Nothing
Just a -> Just $! f a
#ifndef __GLASGOW_HASKELL__
lazy :: a -> a
lazy a = a
#endif
{--------------------------------------------------------------------
[balance x l r] balances two trees with value x.
The sizes of the trees should balance after decreasing the
size of one of them. (a rotation).
[delta] is the maximal relative difference between the sizes of
two trees, it corresponds with the [w] in Adams' paper.
[ratio] is the ratio between an outer and inner sibling of the
heavier subtree in an unbalanced setting. It determines
whether a double or single rotation should be performed
to restore balance. It is correspondes with the inverse
of $\alpha$ in Adam's article.
Note that according to the Adam's paper:
- [delta] should be larger than 4.646 with a [ratio] of 2.
- [delta] should be larger than 3.745 with a [ratio] of 1.534.
But the Adam's paper is errorneous:
- it can be proved that for delta=2 and delta>=5 there does
not exist any ratio that would work
- delta=4.5 and ratio=2 does not work
That leaves two reasonable variants, delta=3 and delta=4,
both with ratio=2.
- A lower [delta] leads to a more 'perfectly' balanced tree.
- A higher [delta] performs less rebalancing.
In the benchmarks, delta=3 is faster on insert operations,
and delta=4 has slightly better deletes. As the insert speedup
is larger, we currently use delta=3.
--------------------------------------------------------------------}
delta,ratio :: Int
delta = 3
ratio = 2
-- The balance function is equivalent to the following:
--
-- balance :: a -> Set a -> Set a -> Set a
-- balance x l r
-- | sizeL + sizeR <= 1 = Bin sizeX x l r
-- | sizeR > delta*sizeL = rotateL x l r
-- | sizeL > delta*sizeR = rotateR x l r
-- | otherwise = Bin sizeX x l r
-- where
-- sizeL = size l
-- sizeR = size r
-- sizeX = sizeL + sizeR + 1
--
-- rotateL :: a -> Set a -> Set a -> Set a
-- rotateL x l r@(Bin _ _ ly ry) | size ly < ratio*size ry = singleL x l r
-- | otherwise = doubleL x l r
-- rotateR :: a -> Set a -> Set a -> Set a
-- rotateR x l@(Bin _ _ ly ry) r | size ry < ratio*size ly = singleR x l r
-- | otherwise = doubleR x l r
--
-- singleL, singleR :: a -> Set a -> Set a -> Set a
-- singleL x1 t1 (Bin _ x2 t2 t3) = bin x2 (bin x1 t1 t2) t3
-- singleR x1 (Bin _ x2 t1 t2) t3 = bin x2 t1 (bin x1 t2 t3)
--
-- doubleL, doubleR :: a -> Set a -> Set a -> Set a
-- doubleL x1 t1 (Bin _ x2 (Bin _ x3 t2 t3) t4) = bin x3 (bin x1 t1 t2) (bin x2 t3 t4)
-- doubleR x1 (Bin _ x2 t1 (Bin _ x3 t2 t3)) t4 = bin x3 (bin x2 t1 t2) (bin x1 t3 t4)
--
-- It is only written in such a way that every node is pattern-matched only once.
--
-- Only balanceL and balanceR are needed at the moment, so balance is not here anymore.
-- In case it is needed, it can be found in Data.Map.
-- Functions balanceL and balanceR are specialised versions of balance.
-- balanceL only checks whether the left subtree is too big,
-- balanceR only checks whether the right subtree is too big.
-- balanceL is called when left subtree might have been inserted to or when
-- right subtree might have been deleted from.
balanceL :: a -> Set a -> Set a -> Set a
balanceL x l r = case r of
Tip -> case l of
Tip -> Bin 1 x Tip Tip
(Bin _ _ Tip Tip) -> Bin 2 x l Tip
(Bin _ lx Tip (Bin _ lrx _ _)) -> Bin 3 lrx (Bin 1 lx Tip Tip) (Bin 1 x Tip Tip)
(Bin _ lx ll@(Bin _ _ _ _) Tip) -> Bin 3 lx ll (Bin 1 x Tip Tip)
(Bin ls lx ll@(Bin lls _ _ _) lr@(Bin lrs lrx lrl lrr))
| lrs < ratio*lls -> Bin (1+ls) lx ll (Bin (1+lrs) x lr Tip)
| otherwise -> Bin (1+ls) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+size lrr) x lrr Tip)
(Bin rs _ _ _) -> case l of
Tip -> Bin (1+rs) x Tip r
(Bin ls lx ll lr)
| ls > delta*rs -> case (ll, lr) of
(Bin lls _ _ _, Bin lrs lrx lrl lrr)
| lrs < ratio*lls -> Bin (1+ls+rs) lx ll (Bin (1+rs+lrs) x lr r)
| otherwise -> Bin (1+ls+rs) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+rs+size lrr) x lrr r)
(_, _) -> error "Failure in Data.Map.balanceL"
| otherwise -> Bin (1+ls+rs) x l r
{-# NOINLINE balanceL #-}
-- balanceR is called when right subtree might have been inserted to or when
-- left subtree might have been deleted from.
balanceR :: a -> Set a -> Set a -> Set a
balanceR x l r = case l of
Tip -> case r of
Tip -> Bin 1 x Tip Tip
(Bin _ _ Tip Tip) -> Bin 2 x Tip r
(Bin _ rx Tip rr@(Bin _ _ _ _)) -> Bin 3 rx (Bin 1 x Tip Tip) rr
(Bin _ rx (Bin _ rlx _ _) Tip) -> Bin 3 rlx (Bin 1 x Tip Tip) (Bin 1 rx Tip Tip)
(Bin rs rx rl@(Bin rls rlx rll rlr) rr@(Bin rrs _ _ _))
| rls < ratio*rrs -> Bin (1+rs) rx (Bin (1+rls) x Tip rl) rr
| otherwise -> Bin (1+rs) rlx (Bin (1+size rll) x Tip rll) (Bin (1+rrs+size rlr) rx rlr rr)
(Bin ls _ _ _) -> case r of
Tip -> Bin (1+ls) x l Tip
(Bin rs rx rl rr)
| rs > delta*ls -> case (rl, rr) of
(Bin rls rlx rll rlr, Bin rrs _ _ _)
| rls < ratio*rrs -> Bin (1+ls+rs) rx (Bin (1+ls+rls) x l rl) rr
| otherwise -> Bin (1+ls+rs) rlx (Bin (1+ls+size rll) x l rll) (Bin (1+rrs+size rlr) rx rlr rr)
(_, _) -> error "Failure in Data.Map.balanceR"
| otherwise -> Bin (1+ls+rs) x l r
{-# NOINLINE balanceR #-}
|