1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE MultiParamTypeClasses #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Safe #-}
#endif
#if __GLASGOW_HASKELL__ >= 706
{-# LANGUAGE DeriveGeneric #-}
#endif
#if __GLASGOW_HASKELL__ >= 710 && __GLASGOW_HASKELL__ < 802
{-# LANGUAGE AutoDeriveTypeable #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module : Data.PriorityQueue.FingerTree
-- Copyright : (c) Ross Paterson 2008
-- License : BSD-style
-- Maintainer : R.Paterson@city.ac.uk
-- Stability : experimental
-- Portability : non-portable (MPTCs and functional dependencies)
--
-- Min-priority queues implemented using the 'FingerTree' type,
-- following section 4.6 of
--
-- * Ralf Hinze and Ross Paterson,
-- \"Finger trees: a simple general-purpose data structure\",
-- /Journal of Functional Programming/ 16:2 (2006) pp 197-217.
-- <http://staff.city.ac.uk/~ross/papers/FingerTree.html>
--
-- These have the same big-O complexity as skew heap implementations,
-- but are approximately an order of magnitude slower.
-- On the other hand, they are stable, so they can be used for fair
-- queueing. They are also shallower, so that 'fmap' consumes less
-- space.
--
-- An amortized running time is given for each operation, with /n/
-- referring to the size of the priority queue. These bounds hold even
-- in a persistent (shared) setting.
--
-- /Note/: Many of these operations have the same names as similar
-- operations on lists in the "Prelude". The ambiguity may be resolved
-- using either qualification or the @hiding@ clause.
--
-----------------------------------------------------------------------------
module Data.PriorityQueue.FingerTree (
PQueue,
-- * Construction
empty,
singleton,
union,
insert,
add,
fromList,
-- * Deconstruction
null,
minView,
minViewWithKey
) where
import qualified Data.FingerTree as FT
import Data.FingerTree (FingerTree, (<|), (|>), (><), ViewL(..), Measured(..))
import Prelude hiding (null)
#if MIN_VERSION_base(4,6,0)
import GHC.Generics
#endif
#if MIN_VERSION_base(4,8,0)
import qualified Prelude (null)
#else
import Data.Foldable (Foldable(foldMap))
import Data.Monoid
#endif
#if (MIN_VERSION_base(4,9,0)) && !(MIN_VERSION_base(4,11,0))
import Data.Semigroup
#endif
import Control.Arrow ((***))
import Data.List (unfoldr)
data Entry k v = Entry k v
#if __GLASGOW_HASKELL__ >= 706
deriving (Generic)
#endif
instance Functor (Entry k) where
fmap f (Entry k v) = Entry k (f v)
instance Foldable (Entry k) where
foldMap f (Entry _ v) = f v
data Prio k v = NoPrio | Prio k v
#if __GLASGOW_HASKELL__ >= 706
deriving (Generic)
#endif
#if MIN_VERSION_base(4,9,0)
instance Ord k => Semigroup (Prio k v) where
(<>) = unionPrio
#endif
instance Ord k => Monoid (Prio k v) where
mempty = NoPrio
#if !(MIN_VERSION_base(4,11,0))
mappend = unionPrio
#endif
unionPrio :: Ord k => Prio k v -> Prio k v -> Prio k v
x `unionPrio` NoPrio = x
NoPrio `unionPrio` y = y
x@(Prio kx _) `unionPrio` y@(Prio ky _)
| kx <= ky = x
| otherwise = y
instance Ord k => Measured (Prio k v) (Entry k v) where
measure (Entry k v) = Prio k v
-- | Priority queues.
newtype PQueue k v = PQueue (FingerTree (Prio k v) (Entry k v))
#if __GLASGOW_HASKELL__ >= 706
deriving (Generic)
#endif
instance Ord k => Functor (PQueue k) where
fmap f (PQueue xs) = PQueue (FT.fmap' (fmap f) xs)
-- | In ascending order of keys.
instance Ord k => Foldable (PQueue k) where
foldMap f q = case minView q of
Nothing -> mempty
Just (v, q') -> f v `mappend` foldMap f q'
#if MIN_VERSION_base(4,8,0)
null (PQueue q) = FT.null q
#endif
#if MIN_VERSION_base(4,9,0)
instance Ord k => Semigroup (PQueue k v) where
(<>) = union
#endif
-- | 'empty' and 'union'
instance Ord k => Monoid (PQueue k v) where
mempty = empty
#if !(MIN_VERSION_base(4,11,0))
mappend = union
#endif
instance (Ord k, Eq v) => Eq (PQueue k v) where
xs == ys = assocs xs == assocs ys
-- | Lexicographical ordering
instance (Ord k, Ord v) => Ord (PQueue k v) where
compare xs ys = compare (assocs xs) (assocs ys)
-- | In ascending key order
instance (Ord k, Show k, Show v) => Show (PQueue k v) where
showsPrec p xs = showParen (p > 10) $
showString "fromList " . shows (assocs xs)
-- | /O(1)/. The empty priority queue.
empty :: Ord k => PQueue k v
empty = PQueue FT.empty
-- | /O(1)/. A singleton priority queue.
singleton :: Ord k => k -> v -> PQueue k v
singleton k v = PQueue (FT.singleton (Entry k v))
-- | /O(1)/. Add a (priority, value) pair to the front of a priority queue.
--
-- * @'insert' k v q = 'union' ('singleton' k v) q@
--
-- If @q@ contains entries with the same priority @k@, 'minView' of
-- @'insert' k v q@ will return them after this one.
insert :: Ord k => k -> v -> PQueue k v -> PQueue k v
insert k v (PQueue q) = PQueue (Entry k v <| q)
-- | /O(log n)/. Add a (priority, value) pair to the back of a priority queue.
--
-- * @'add' k v q = 'union' q ('singleton' k v)@
--
-- If @q@ contains entries with the same priority @k@, 'minView' of
-- @'add' k v q@ will return them before this one.
add :: Ord k => k -> v -> PQueue k v -> PQueue k v
add k v (PQueue q) = PQueue (q |> Entry k v)
-- | /O(log(min(n1,n2)))/. Concatenate two priority queues.
-- 'union' is associative, with identity 'empty'.
--
-- If there are entries with the same priority in both arguments, 'minView'
-- of @'union' xs ys@ will return those from @xs@ before those from @ys@.
union :: Ord k => PQueue k v -> PQueue k v -> PQueue k v
union (PQueue xs) (PQueue ys) = PQueue (xs >< ys)
-- | /O(n)/. Create a priority queue from a finite list of priorities
-- and values.
fromList :: Ord k => [(k, v)] -> PQueue k v
fromList = foldr (uncurry insert) empty
-- | /O(1)/. Is this the empty priority queue?
null :: Ord k => PQueue k v -> Bool
null (PQueue q) = FT.null q
-- | /O(1)/ for the element, /O(log(n))/ for the reduced queue.
-- Returns 'Nothing' for an empty map, or the value associated with the
-- minimal priority together with the rest of the priority queue.
--
-- * @'minView' 'empty' = 'Nothing'@
--
-- * @'minView' ('singleton' k v) = 'Just' (v, 'empty')@
--
minView :: Ord k => PQueue k v -> Maybe (v, PQueue k v)
minView q = fmap (snd *** id) (minViewWithKey q)
-- | /O(1)/ for the element, /O(log(n))/ for the reduced queue.
-- Returns 'Nothing' for an empty map, or the minimal (priority, value)
-- pair together with the rest of the priority queue.
--
-- * @'minViewWithKey' 'empty' = 'Nothing'@
--
-- * @'minViewWithKey' ('singleton' k v) = 'Just' ((k, v), 'empty')@
--
-- * If @'minViewWithKey' qi = 'Just' ((ki, vi), qi')@ and @k1 <= k2@,
-- then @'minViewWithKey' ('union' q1 q2) = 'Just' ((k1, v1), 'union' q1' q2)@
--
-- * If @'minViewWithKey' qi = 'Just' ((ki, vi), qi')@ and @k2 < k1@,
-- then @'minViewWithKey' ('union' q1 q2) = 'Just' ((k2, v2), 'union' q1 q2')@
--
minViewWithKey :: Ord k => PQueue k v -> Maybe ((k, v), PQueue k v)
minViewWithKey (PQueue q)
| FT.null q = Nothing
| otherwise = Just ((k, v), case FT.viewl r of
_ :< r' -> PQueue (l >< r')
_ -> error "can't happen")
where
Prio k v = measure q
(l, r) = FT.split (below k) q
below :: Ord k => k -> Prio k v -> Bool
below _ NoPrio = False
below k (Prio k' _) = k' <= k
-- | /O(n)/. Key-value pairs in ascending key order.
assocs :: Ord k => PQueue k v -> [(k, v)]
assocs = unfoldr minViewWithKey
|